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ABSTRACT
Database management systems are facing growing data volumes.
Previous research suggests that GPUs are well-equipped to quickly
process joins and similar stateful operators, as GPUs feature high-
bandwidth on-board memory. However, GPUs cannot scale joins
to large data volumes due to two limiting factors: (1) large state
does not fit into the on-board memory, and (2) spilling state to main
memory is constrained by the interconnect bandwidth. Thus, CPUs
are often the better choice for scalable data processing.

In this paper, we propose a new join algorithm that scales to
large data volumes by taking advantage of fast interconnects. Fast
interconnects such as NVLink 2.0 are a new technology that connect
the GPU to main memory at a high bandwidth, and thus enable
us to design our join to efficiently spill its state. Our evaluation
shows that our Triton join outperforms a no-partitioning hash join
by more than 100× on the same GPU, and a radix-partitioned join
on the CPU by up to 2.5×. As a result, GPU-enabled DBMSs are
able to scale beyond the GPU memory capacity.
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1 INTRODUCTION
GPUs are being commercially adopted to accelerate query process-
ing [86]. They are available from all major cloud vendors, including
Amazon EC2, Google Compute Engine, and Microsoft Azure, and
are being integrated into academic [25, 30, 40, 52, 105, 121] and
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Figure 1: Out-of-core state results in a performance cliff and
a slow-down, despite using a fast interconnect. In contrast,
our Triton join gracefully scales to joins with a large state.

commercial GPU-enabled database management systems [78, 120].
These GPU-enabled DBMSs see the most benefit for join and group-
by aggregation queries with an in-GPU state [24, 40, 44, 48, 131, 144].
However, database research suggests that GPUs cannot efficiently
scale to large, out-of-core state due to the data transfer bottle-
neck [40, 44, 118, 131, 144].

The data transfer bottleneck is caused by the low bandwidth and
high latency of the interconnect between the GPU and the CPU [81].
This hardware limitation leads to a narrow scope where DBMSs
benefit from GPUs. However, as we illustrate in Figure 1, higher
interconnect bandwidth is necessary, but not sufficient for high
scalability. Even if the GPU is given a faster interconnect, the CPU
outperforms the GPU when joining two large data sets. Therefore,
we identify three fundamental challenges that need to be addressed
to widen the applicability of GPUs:

Scalability. GPU joins store their state in GPU memory to in-
crease throughput [49, 66, 91, 104, 131]. Due to the limited capac-
ity of GPU memory, GPU joins cannot efficiently scale to a large
state [81]. In contrast, CPUs [8, 138] have two orders-of-magnitude
higher memory capacity than GPUs [4, 96, 99]. Thus, we must adapt
GPU joins to spill their state to CPU memory to achieve scalability.

Robustness. Spilling the join state to CPU memory results in a
performance cliff [81]. These sharp performance drops are difficult
to account for in query optimizers, because cardinality estimates can
be significantly wrong [29, 87]. Thus, GPU-enabled DBMSs must
gracefully scale to large data sizes for a consistent user experience.

Efficiency. State-of-the-art approaches reduce interconnect trans-
fers by shifting computations from the GPU to the CPU [43, 45,
112, 133, 139]. However, both interconnect bandwidth and CPU
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Figure 2: Hardware architecture of a system with a fast inter-
connect. The electrical bandwidths are annotated.

cycles are scarce resources. DBMSs should use the GPU to offload
computations from the CPU, while maximizing performance.

A newly emerging technology, fast GPU interconnects, has the
potential help us address the above challenges. Fast interconnects
provide GPUs with high-bandwidth, cache-coherent access to main
memory. Recent examples include NVLink 2.0 [96] and 4.0 [54],
Infinity Fabric [7], and Compute Express Link 2.0 [32].

In this work, we investigate how fast interconnects can improve
GPU join throughput. Our goal is to enable GPUs to process joins
with a state that exceeds the GPU memory capacity. Thus, we
consider joins smaller and larger than the GPU memory. For large
joins, we partition data out-of-core in CPU memory using the fast
interconnect to achieve data locality during the join. In contrast,
small joins require us to cache all intermediate results in GPU
memory to avoid unnecessary data transfers. We combine the GPU-
based partitioning and the caching in our new, hierarchical hybrid
hash join algorithm: 3H+ ≡ the Triton join.

Overall, our contributions are as follows:
(1) We investigate the requirements of an out-of-core GPU join

in regard to fast interconnects, and identify hardware bottle-
necks that limit scalability (Section 3).

(2) We propose a new GPU radix partitioning algorithm that
takes advantage of fast interconnects to achieve a high band-
width and scale to large data volumes (Section 4).

(3) We present our new Triton join algorithm, a scalable radix-
partitioned GPU hash join that partitions data using the GPU
and caches partitioned data in GPU memory (Section 5).

The further structure of this paper is as follows. In Section 2,
we briefly introduce modern GPU hardware and joins. Next, we
motivate our approach by revisiting out-of-core GPU joins in Sec-
tion 3. After that, we demonstrate our out-of-core radix partitioning
approach in Section 4, and then overcome these challenges with our
Triton join in Section 5. In Section 6, we show our evaluation and
discuss our insights. Finally, we review related work in Section 7
and conclude in Section 8.

2 BACKGROUND
In this section, we provide an overview of the hardware architecture
of a fast-interconnect system, and of hardware-sensitive joins.

2.1 GPUs and Fast Interconnects
Fast interconnects are able to connect a GPU and a CPU with high
bandwidth, a unified address space, and system-wide cache-coher-
ence [7, 59, 96, 103]. As an example, we show the architecture of an

IBM AC922 system [92] with an IBM POWER9 CPU and an Nvidia
V100 GPU in Figure 2. Although we focus on NVLink 2.0, other
fast interconnects such as Compute Express Link [32], Infinity Fab-
ric [7], and OpenCAPI [102] specify a similar system architecture.

Overview. The system consists of one or more multi-core CPUs
and discrete GPUs. Each GPU is attached to a CPU by NVLink 2.0,
and has at least 16 GiB of on-board memory with 900 GB/s of
bandwidth [96]. Each CPU comes with up to 4 TiB of memory
attached at 170 GB/s [138].

GPU Architecture. GPUs such as Nvidia “Volta” [28, 96] and
AMD “Vega” [3] execute threads in parallel on up to 84 streaming
multiprocessors (SM). Each SM schedules threads in hardware [79],
and provides up to 65 thousand registers to hide memory latencies
of up to 2 µs [39]. Each SM consists of 32–128 cores, on which 32
threads are physically executed together as a warp [100]. GPU pro-
gramming languages abstract multiple warps as a thread block [6,
100]. Warps coalesce (i.e., group) adjacent memory accesses into a
singlememory transaction to improvememory transfer efficiency [33,
93] and to reduce the memory address translation request rate [117].
The GPU caches memory accesses in its L1 and L2 caches [28].

Address Translation. CPUs and GPUs share a single address
space [28]. A program’s virtual addresses are translated into physi-
cal addresses on a memory access [28]. Translations are cached in
a hierarchy of translation lookaside buffers (TLBs) [125]. Although
GPU vendors do not publish details, it is widely accepted that
“Pascal” and newer GPUs have two TLB levels [61, 64, 65, 69, 75].
The L1 TLB is private to each SM, while multiple SMs share a
L2 TLB [11, 69]. In addition, CPU memory accesses are translated
by an I/O memory management unit (IOMMU) [22, 23, 28, 58]. The
IOMMU is part of the CPU and contains an IOTLB and 12 par-
allel page table walkers [22, 57, 58]. On a IOTLB miss, the page
table walkers fetch a translation from a page table stored as a radix
tree in CPU memory [57, 62]. GPUs are able to coalesce page ta-
ble walks [69, 109, 110], and thus the IOMMU returns up to 16
translations at a time [58]. Both the GPU and the IOMMU support
4 KiB, 64 KiB and 2 MiB pages [22, 57, 58, 97], and the IOMMU also
supports 1 GiB pages [22, 57].

NVLink 2.0. The GPU connects to the CPU at 75 GB/s in both
directions, for a total of 150 GB/s [92]. The connection is mediated
by a high-speed hub on the GPU [95], and an NVLink processing
unit on the CPU [58]. These units send and receive packets con-
sisting of a 16-byte header and 1–256 bytes of payload [39, 58].
Small payloads incur additional overhead. Small reads are padded
to a 32-byte payload [39]. Small writes require a 16-byte “byte en-
able” header extension [39], that specifies which payload bytes to
write [102]. The GPU SMs support packets up to 128 bytes (i.e.,
an L1 cacheline [65, 71]), and direct memory access copy engines
handle packets up to 256 bytes [58]. We calculate that the maximum
effective bandwidth is 62–65.7 GiB/s per direction.

2.2 Hardware-Sensitive Joins
In this work, we extend the parallel radix-partitioned hash join algo-
rithm, as introduced by Kim et al. [72]. The core idea of partitioned
join algorithms is to increase data locality, such that we are able to
store the hash table in the processor cache [132]. The low access
latency of the cache improves the performance of random accesses
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to the hash table. This technique also applies to other hash-based re-
lational operators, such as group-based aggregations [36, 132, 143]
and duplicate elimination [36]. In contrast to other partitioning
methods, radix partitioning has the advantage that it helps to re-
duce TLB misses [84].

Radix-partitioned hash joins have two constraints. First, the
hash tables must fit into the cache. As the cache has a constant
size, larger data volumes require a higher fanout (i.e., number of
partitions) to keep the size of each partition constant. Second, a high
fanout incurs frequent TLB misses if the fanout is higher than the
number of available TLB entries. TLB misses are expensive, because
resolving a miss involves between 1–6 memory accesses [16].

For large data sets, there exists a fundamental tension between
these two constraints. On the one hand, a high fanout is necessary
to efficiently look up hash table entries. On the other hand, a high
fanout increases the cost of partitioning. Database literature ad-
dresses this trade-off by optimizing high-fanout partitioning on
CPUs and GPUs as follows.

OnCPUs, we reduce TLBmisses through software write-combining
(SWWC) [127]. SWWC reduces TLBmisses by intermediately buffer-
ing tuples in the processor cache. Tuples are then written out to
their final positions in batches. Thus, a batch size of 𝑁 reduces
the amount of TLB misses by a factor of 𝑁 [129]. Flushing buffers
can be optimized with non-temporal stores, that avoid polluting the
cache [141]. Finally, storing partition offsets in a micro-row layout
reduces cache misses and requires less cache space [12, 130].

Optimization techniques for GPUs differ from those for CPUs.
Scattered writes can be coalesced by partially sorting tuples in
scratchpad memory [126]. A thread block works together to sort
tuples and flush them to memory. In contrast to SWWC on CPUs,
all tuples are flushed at the same time. If the batch size is larger than
the fanout, it follows that each memory transaction must write out
multiple tuples per partition. However, although writes introduce
coalescing opportunities, misalignment can still prevent coalescing,
thereby reducing efficiency.

On recent GPUs that feature efficient atomic additions [64], par-
titioning can be improved by replacing prefix scan with a linear
allocator for a single data pass within the scratchpad [124, 139]. A
linear allocator tracks free array slots using an atomically incre-
menting counter. We refer to this approach as the linear allocator
software write-combining (Linear) partitioning algorithm.

3 REVISITING OUT-OF-CORE GPU JOINS
Existing out-of-core join algorithms assume to varying degrees that
interconnect bandwidth is the bottleneck, which fundamentally
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Figure 4: Data partitioning throughput of a CPU and a GPU
for different source and destination locations.

shapes the design strategy underpinning the algorithm. In this
section, we examine how fast interconnects change this assumption,
and study the impact of the interconnect on the join strategy.

We first discuss the CPU-partitioned join strategy (Section 3.1),
as we find it an enlightening point in the design space due to its
focus on the transfer volume. Then, we show that fast interconnects
enable the GPU to process out-of-core data (Section 3.2). Based on
this insight, we argue that fast interconnects open the door for a new
high-level design, the GPU-partitioned join strategy (Section 3.3).
Finally, we analyze the hardware capabilities and limitations to
inform our detailed design choices (Section 3.4).

3.1 The CPU-Partitioned Join Strategy
A recent CPU-partitioned join strategy proposes to partition the data
on the CPU before transferring it to the GPU [133]. The goals are
to minimize data transfers across the interconnect, and to access
the join’s state efficiently in GPU memory.

We outline this join strategy in Figure 3. It consists of three
phases. First, the CPU partitions the data into working sets that
individually fit into GPU memory. Then, the strategy transfers a
working set to the GPU. Third, the GPU joins the relations within
the working set. Steps two and three are repeatedly executed in
a pipeline to hide the transfer latency. Although the partitioning
and transfer may overlap, at least one relation must be completely
partitioned before starting the join.

The CPU can initially transfer only a fraction of the data to the
GPU, as only one working set completely fits into GPU memory at
a time. Let this fraction be 𝛼 := |working set |

|data | . To saturate the inter-
connect bandwidth, the CPU must partition at a rate higher than
1/𝛼 × [transfer bandwidth]. For example, with a 12 GiB/s transfer
rate and 𝛼 = 1/4, the CPU must partition at 4 · 12 GiB/s = 48 GiB/s.
However, the partitioning throughput must increase to 260 GiB/s
in order to saturate a 65 GiB/s fast interconnect.

We argue that such a partitioning rate is unrealistically fast, as it
would exceed the CPU memory bandwidth even when using multi-
ple CPUs. As a result, the CPU-partitioned strategy underutilizes
the GPU and the fast interconnect.

3.2 Fast Interconnects Outpace CPUs
Fast interconnects provide a new opportunity to utilize hardware
resources efficiently by computing all join phases on the GPU. We
show that if the join is optimized for a fast interconnect, then the
GPU is able to outperform a CPU even for this data-intensive task.
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Figure 5: The GPU-partitioned join strategy processes both
the partition and join phases on the GPU, spilling state to
CPU memory if necessary.

We demonstrate our insight in Figure 4. We measure the parti-
tioning throughput of a CPU and a GPU, and distinguish between
the two extreme cases: (a) either all resulting partitions fit into
GPU memory or (b) all partitions are stored to CPU memory. Both
processors read the base relation from CPU memory, and split the
data into 512 partitions. We observe that in both cases the GPU is
faster than the CPU. Conversely, despite transferring all partitions
at once (𝛼 = 1), the CPU cannot saturate the fast interconnect.

Our take-away is that fast interconnects require a new approach
for GPU joins to take full advantage of the hardware. The existing
CPU-partitioned strategy underutilizes the GPU and the fast inter-
connect. Thus, a GPU-centric approach would be able to utilize the
available hardware resources better.

3.3 The GPU-Partitioned Join Strategy
Our goal is to compute the join end-to-end on the GPU. For this
reason, we propose a new, GPU-partitioned join strategy that is
optimized for GPUs with fast interconnects.

We highlight our GPU-partitioned join strategy in Figure 5. Our
strategy works as follows. In the partitioning phase, the GPU loads
the data from CPU memory, and caches the resulting partitions in
GPU memory. If this state exceeds the GPU memory capacity, the
GPU spills the remainder to CPU memory. In the join phase, the
GPU loads the spilled state from CPU memory again.

We overlap transfers and computations using two methods. For
phases that consist of a single GPU kernel, we rely on the hardware
cache-coherence [81]. In contrast, for phases consisting of multiple
kernels, we describe a new transfer method in Section 5.2.

Overall, the advantages of our strategy are that (1) computation
is offloaded to the GPU and that (2) the join gracefully scales to
out-of-core state. The trade-off is a 1–2× higher transfer volume,
depending on howmany data are cached vs. spilled to CPUmemory.

3.4 Capabilities of Fast Interconnects
To efficiently implement our GPU-partitioned join strategy in prac-
tice, we require an in-depth understanding of the interconnect
hardware. Crucially, if data is spilled during the partitioning phase,
the GPU performs random writes to CPU memory [84]. Thus, we
analyze the key metrics for random accesses: the interconnect band-
width of fine-grained memory accesses, and the TLB miss latency.

3.4.1 Efficient Transfers with Fine Granularity. Ideally, a join run-
ning on the GPU achieves the full interconnect bandwidth when
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Figure 6: GPU interconnect bandwidth of a random access
pattern to CPU memory with varying access granularities.

accessing CPU memory. However, the bandwidth achieved in prac-
tice depends on the access granularity, as the GPU executes memory
accesses in units of memory transactions [100]. Memory transac-
tions have a hardware-specific size. If accesses are fine-grained,
i.e., smaller than the memory transaction size, then each memory
transaction only carries a partial payload. This leads to a reduced
bandwidth utilization. Althoughmemory transactions in GPUmem-
ory have been researched [60, 71, 134], prior work does not consider
the effect on the interconnect bandwidth.

Setup. We experimentally determine the minimum required
memory access granularity to achieve the full interconnect band-
width in Figure 6(a). In the experiment, the GPU randomly accesses
CPU memory on the nearest NUMA node. We first scale the access
granularity from 4–16 bytes by increasing the integer type from
32–128 bits. Then, we continue to scale by coalescing 2–32 threads
(i.e., up to a warp) for 32–512-byte accesses. We measure read and
write accesses within a 1 GiB array, and efficiently generate the
random access pattern via a linear congruential generator [73]. All
accesses are aligned according to their granularity, i.e., a 512-byte
access is aligned to 512 bytes.

Results. In the measurement, we observe that the interconnect
bandwidth grows linearly with the access granularity. Small reads
up to 64 bytes are 44–74% faster than writes. At 128 bytes, the
bandwidth of random accesses equals the bandwidth of a coalesced
sequential access pattern.

Furthermore, in Figure 6(b), we determine that misaligned ac-
cesses reduce the achieved interconnect bandwidth. We measure
that misaligning a 512-byte memory access by 16 bytes reduces the
bandwidth by 20% for reads and 56% for writes.

Analysis. From our results, we deduce that “Volta” GPUs coa-
lesce CPU memory accesses via NVLink 2.0 into 128-byte memory
transactions (or larger) instead of 32 bytes in GPUmemory [71, 136].
These transactions are aligned to 128-byte cachelines. Our analysis
is substantiated by vendor documentation on NVLink 2.0 [58, 100].
However, it is unclear why small reads outperform small writes.

Our findings differ from GPU literature, which suggests that
GPU random accesses to CPU memory are slower that sequential
transfers [81], and that GPU programmers should coalesce memory
accesses of warps with natural alignment on the data type [5, 100].

Overall, if accesses are perfectly coalesced as described above,
GPUs are able to achieve the full interconnect bandwidth for ran-
dom CPU memory accesses at a 128-byte granularity.
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3.4.2 TLB Miss Cost with Fast Interconnects. Fast interconnects
give GPUs high-bandwidth access to terabytes of data in CPU mem-
ory. Due to the large data size, a join randomly accesses thousands
of memory pages. As a result, virtual to physical memory address
translations impact join throughput. We quantify the address trans-
lation cost for GPUs, and discover that TLB misses when using a
fast interconnect are up to an order-of-magnitude more expensive
than TLB misses in GPU memory.

Setup. In Figure 7, we compare the TLB miss costs of GPU
accesses to GPU memory and to CPU memory. We measure the
latency of individual memory accesses with fine-grained pointer
chasing [88]. We perform 16, 32, and 64 MiB strides in a memory
range of 6–10.7 GiB in GPU memory and a range of 1–87.5 GiB
in CPU memory. We allocate 2 MiB huge pages in CPU memory
on the NUMA node closest to the GPU. To avoid page fragmenta-
tion, we preallocate huge pages early at boot time [90]. To prevent
the hardware from caching translations across runs, we flush the
IOTLB before each run by calling the mprotect system call [42].
We observe that the GPU TLBs are flushed by the CUDA runtime
before each kernel launch. As the L1 data cache is virtually tagged
and thus does not incur address translations [65], we bypass the L1
cache with the cg PTX cache hint [101].

Results. In GPU memory, we observe that the GPU L2 TLB
covers 8 GiB. We measure a L2 TLB hit latency of 151.9 ± 4.8 ns
and a miss latency of 226.7 ± 4.8 ns. Our measurements match the
results of Jia et al. [65], who state that “Volta” GPUs have a L1 TLB
in addition to the L2 TLB.

In CPU memory, the L2 TLB also covers 8 GiB with a hit latency
of 449.7± 32.4 ns. Beyond the L2 TLB, we notice two miss plateaus,
one at 9.5–32 GiB and another above 37 GiB. For the first, we
measure a latency of 532.9 ± 45.8 ns, and 3186.4 ± 154.0 ns for the
second. We speculatively name the plateaus L3 TLB* and Miss*.

Analysis.We observe that the L2 TLB page size is 32 MiB not
only in GPU memory [65, 69], but also in CPU memory. Thus, 16
physically adjacent 2 MiB pages are likely coalesced on a page table
walk [34, 35, 58, 69, 109].

However, we lack evidence to fully explain the TLB misses that
occur in CPU memory. The high miss latency (Miss*) indicates a
GPU TLB miss, that results in an IOTLB or IOMMU lookup. In
contrast, the L2 TLB miss penalty to the L3 TLB* is only 83 ns. On
the one hand, this is likely too short to traverse the interconnect. On
the other hand, the L2 TLB miss penalty in GPU memory is similar
at 75 ns. As NVLink 2.0 enables a system-wide page table [58], we
assume that the GPU does not duplicate the table in GPU memory.

Table 1: Partitioning design goals.

Algorithm Space Efficient Perfect Coalescing High Fanout
SWWC ✗ ✗ ✗
Linear ✓ ✗ ✗
Shared ✓ ✓ ✗
Hierarchical ✓ ✓ ✓

Thus, our results might indicate that another translation caching
layer exists [19, 21, 61], that is distinct from the IOTLB. However,
we leave a deeper investigation to future work.1

In conclusion, TLB misses are a hard problem to mitigate for out-
of-core algorithms. However, we find that if an algorithm carefully
manages its TLB misses and access granularity, then the GPU can
achieve a high interconnect bandwidth even for random accesses.

4 EFFICIENTLY PARTITIONING DATA
OVER A FAST INTERCONNECT

In order to join large data efficiently, the GPU first needs to partition
the data out-of-core. We transform our hardware insights from
Section 3.4 into concrete design goals (Section 4.1), on which we
base two new radix partitioning algorithms for GPUs. First, we
increase the interconnect utilization of random writes in our shared
software write-combining (Shared) algorithm (Section 4.2). In a next
step, we reduce GPU TLBmisses for high fanouts in our hierarchical
software write-combining (Hierarchical) algorithm (Section 4.3).

4.1 Design Goals
Achieving high partitioning throughput requires us to consider
both the GPU architecture and the fast interconnect. To this end
we formulate three design goals.

First, the algorithm should be space efficient, due to the small
scratchpad capacity. As a thread block shares the scratchpad, all
accesses to the scratchpad must be thread-safe. Second, random
memory accesses over the interconnect should adhere to the optimal
granularity and alignment for perfect coalescing (see Section 3.4.1).
Finally, large data sets require a high fanout to reduce the size of
each partition. This incurs TLB misses, which should be avoided
(see Section 3.4.2).

State-of-the-art algorithms do not achieve these goals, as we
summarize in Table 1. The SWWC algorithm allocates thread-pri-
vate buffers, as CPUs have large caches. Linear is designed for
in-GPU partitioning, and opportunistically coalesces writes by sort-
ing batches of tuples. Thus, we devise a new partitioning approach
optimized for out-of-core partitioning.

4.2 Shared: High-Throughput Partitioning
We design our shared software write-combining (Shared) algorithm
for space-efficiency and perfect coalescing. We first provide an
overview of Shared, and then examine the buffer and flush phases
in detail. Finally, we discuss how Shared achieves our design goals.

Description. In Figure 8, we show the execution flow of our
algorithm in seven steps. On a high level, Steps 1–3 make up the
fill phase, and Steps 4–6 constitute the flush phase. Step 7 begins a

1According to Nvidia, this information is currently not publicly available.
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ing is coalesced. Shown is one warp with four threads.

new fill phase. Before execution begins, the input is divided into
equally-sized chunks which are assigned to thread blocks.

Fill Phase. Execution proceeds in warps. In Step ➀, each thread
reads a tuple into a register and hashes the key. Then (➁), each
thread tries to acquire a free slot in the buffer indicated by the hash.
Threads acquire slots atomically, as the buffers are shared among
all warps. If a thread successfully acquires an empty slot ( ) in
Step ➂, the thread stores its tuple into the buffer and marks itself
“done”. If all threads in a warp are “done”, the warp proceeds to the
next fill phase. Else, if any thread encountered a full buffer ( ),
the warp proceeds to the flush phase.

Flush Phase. The flush phase begins with Step ➃. All active
threads (i.e., not “done”) of the warp participate in a leader ballot,
and elect a thread as the warp leader. We define the first invalid
slot (i.e., the buffer size) as a lock on the buffer. Thus, the full
buffers are locked since Step two. All active threads except the
leader immediately release their lock to enable parallel flushes by
other warps. Next (➄), the warp flushes the leader’s buffer. Then,
in Step ➅, the active threads retry acquiring a slot. If at least one
thread fails to acquire a slot, the warp repeats the flush phase until
all threads have buffered their tuple and are marked “done”. Finally,
all threads start a new fill phase in Step ➆.

Design Discussion. In our design, two aspects are important
to efficiently share buffers and perfectly coalesce writes. First, fill-
ing the buffers is thread-safe but lock-free. Only flushing a buffer
requires a lock, which we assign to a warp instead of spinning on
the lock. Second, each flush is a multiple of the memory transac-
tion size and also aligned to the transaction size. This ensures that
optimally-sized writes are not split into two memory transactions.

4.3 Hierarchical: High-Fanout Partitioning
To reduce expensive GPU TLB misses (see Section 3.4.2), we intro-
duce a new hierarchical shared software write-combine (Hierarchical)
algorithm. Hierarchical extends the SWWC buffers in scratchpad
memory with a second-level cache in GPU memory. By adding
buffer capacity, Hierarchical incurs less TLB misses when writing
to CPU memory, and we are thus able to increase the fanout.

Description.We derive the Hierarchical algorithm from Shared
by extending the flush phase into a two-level hierarchy in Figure 9.
The fill phase remains unchanged. The new flush phase consists of
seven steps, that are executed by a warp.

L1 Eviction. The flush begins when the warp encounters a full
buffer and obtains a lock on that buffer in Step ➀. The lock is
enforced by the fill-state counter when the buffer is full. In Step ➁,
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Figure 9: Buffer tuples in a two-level SWWC hierarchy for
high fanouts. The 2nd level provides space for more buffers.

the warp evicts the all tuples from the L1 buffer to its corresponding
L2 buffer. If free space remains in the L2 buffer, the warp proceeds
to the next fill phase after the eviction completes. Otherwise, if the
buffer is full, the warp transitions to the L2 flush.

L2 Flush. The warp flushes the L2 buffer asynchronously to
the execution of other warps as follows. In Step ➂, the warp first
swaps the full buffer with an empty buffer from a spare buffer pool.
The swap is non-blocking, as the spare pool contains one spare
buffer per warp (i.e., double-buffering). Then, the warp releases
its lock on the buffer in Step ➃. This allows other warps to fill
the fresh buffer in parallel to the flush. Thus, the next two steps
occur asynchronously to the main control flow. In Step , the warp
flushes the full buffer’s contents to CPU memory, and inserts the
emptied buffer into the spare pool in Step B . Finally, the warp
proceeds to a new fill phase (➄).

Design Discussion. A key aspect of Hierarchical is that L2
buffers are flushed asynchronously. This shortens the critical sec-
tion, as we move the high-latency writes to CPU memory outside
of the lock. Crucially, releasing only the L1 buffer is not enough.
Instead, the L2 buffer must also be released via double-buffering. In-
side the critical section, the buffer swap consists of a pointer update
followed by a scratchpad memory fence and has a low overhead.

Overall, our Hierarchical algorithm enables us to efficiently par-
tition large, out-of-core data in CPU memory with a high fanout.

5 SCALING THE STATE OF A GPU JOIN
Join algorithms are all limited by the GPU memory capacity and
the interconnect bandwidth. For example, no-partitioning joins
have poor data locality when the hash table spills to CPU memory,
whereas partitioned joins are bandwidth-intensive due to their
multiple data passes. The challenge is to achieve good data locality
while at the same time reducing interconnect transfers.

In this section, we introduce our Triton join algorithm, that aims
to balance these two constraints. We base our algorithm on the
hybrid hash join [36]. We optimize our Triton join for GPUs by
performing multi-pass radix partitioning [84] (Section 5.1), overlap-
ping transfer and compute (Section 5.2), and a new caching scheme
for in-memory data (Section 5.3). By using the GPU to partition data
with our Hierarchical algorithm and caching a working set in GPU
memory, the Triton join puts into practice our GPU-partitioned
join strategy that we describe in Section 3.3.



PR
EP
RIN

T
Triton Join: Efficiently Scaling to a Large Join State on GPUs with Fast Interconnects SIGMOD’22, June 12–17, 2022, Philadelphia, PA, USA

1st Pass
Partitioning

Join R and S2nd Pass

R

S
i

j

ip

jp

iq

jq

Build R ⋈ S

Materialize

i

j

ip

jp

iq

jq

Probe

Materialize

Hash Tables
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5.1 The Triton Join Algorithm
The Triton join algorithm joins an inner relation 𝑅 and an outer
relation 𝑆 using an equality predicate (i.e., an equi-join). We define
the cardinality of 𝑅 to be smaller or equal to the cardinality of 𝑆 .
We explicitly make no assumptions about the data volume |𝑅 | and
|𝑆 |, apart from that the system has enough total memory capacity
to store both relations; either relation may be smaller or larger than
the GPU memory capacity 𝐶 .

We illustrate our Triton join algorithm in Figure 10. The algo-
rithm consists of three stages:

1st Pass. The first pass radix-partitions 𝑅 and 𝑆 by the lower
𝐵1 bits of the hashed join key. We choose 𝐵1 such that two corre-
sponding partition pairs of 𝑅 and 𝑆 fit into, e.g., half of the GPU
memory, i.e., |𝑅𝑖 | + |𝑆𝑖 | + |𝑅 𝑗 | + |𝑆 𝑗 | < 𝐶

2 . For example, 1 TiB of
data requires 𝐵1 = 9 radix bits to store each partition into a 2 GiB
memory buffer. Two pairs, 𝑖 and 𝑗 , are necessary to pipeline the
next algorithm stages. The first partitioning pass uses only a part
of the GPU memory’s capacity, e.g., 𝐶2 to leave space for the results
of the 2nd partitioning pass. The partitioning is executed in parallel
on the GPU. At the end of this stage, all threads wait at a barrier
before the join continues to the second partitioning pass.

2nd Pass. The second pass partitions each 𝑅𝑖 and 𝑆𝑖 partition by
their next higher radix bits. Our choice of 𝐵2 ensures that the re-
sulting 𝑅𝑖𝑝 partitions fit into the scratchpad memory. For example,
a 2 GiB partition requires 𝐵2 = 15 radix bits, given a 64 KiB scratch-
pad. Optionally, the second pass processes only a subset of 𝐵2, and
a third pass handles the remainder. The second pass reads data from
CPU memory and writes its results to GPU memory. Thus, the third
pass and the join phase operate within GPU memory.

Join 𝑅 and 𝑆 . The join phase processes each 𝑅𝑖𝑝 and 𝑆𝑖𝑝 pair
together. The join first builds a hash table in scratchpad memory
with 𝑅𝑖𝑝 . Then, the join probes the hash table with 𝑆𝑖𝑝 . The join
result is written to CPU memory, as, in the general case, the results
are larger than the GPU memory capacity. The join requires only a
single data pass to materialize results by using a linear allocator [40].
Alternatively, each thread aggregates values inside a register, and
the total result of all threads is computed by, e.g., an atomic addition.

5.2 Overlapping Transfer and Compute
Pipeline parallelism is an integral part of our Triton join, as pipelin-
ing hides the data transfer time. In the partitioning stages, the GPU
pulls data from pageable CPU memory on-demand using the cache-
coherence [81]. This mechanism enables the hardware to transfer

2nd Part. Pass Join
Join2nd Part. Pass

Barrier

2nd Part. Pass

1st Part. Pass

Figure 11: In the Triton join, the 2nd partitioning pass and
the join are overlapped to optimize interconnect utilization.

Virtual MemoryGPU Memory Page CPU Memory Page

Partitions Ri Rj Si Sj

mapping

Figure 12: State is cached in GPU memory pages that are
interleaved with CPUmemory pages into a contiguous array.

data implicitly and in parallel to computations. However, the Triton
join requires multiple kernels to overlap with the data transfer (i.e.,
the second partitioning pass and the join). Multiple kernels can be
overlapped with explicit transfers (e.g., cudaMemcpyAsync), but this
would require pinned memory. Instead, we devise a new solution
based on concurrent kernel execution [2, 94].

Concurrent kernel execution enables task parallelism on GPUs
by running kernels on different SMs, and serves to increase GPU
resource utilization [105]. In our Triton join, we configure each
pipeline stage to occupy half of the available SMs and schedule
the stages on multiple CUDA streams as shown in Figure 11. The
GPU then executes the kernels in parallel. Thus, the transfer in the
partitioning stage overlaps with the computation in the join stage.

5.3 Caching the Working Set in GPU Memory
We transform the partitioned hash join into a hybrid hash join by
caching part of the state in GPU memory instead of writing every-
thing back to CPU memory. Caching state reduces data transfers
for small data sets, while providing robustness against performance
cliffs when scaling the data size. However, achieving these benefits
requires us to carefully consider how caching impacts transfers.

The Triton join keeps the interconnect busy by distributing the
cache space evenly over the intermediate state. We implement the
cache by allocating pages that are physically in GPU and CPU
memory, and then mapping these pages into a contiguous array
in virtual memory, which we illustrate in Figure 12. The pages are
interleaved in intervals in proportion to the physical allocation sizes,
e.g., one GPU page after every two CPU pages. During execution,
the GPU accessesmultiple pages in parallel, and consistently utilizes
the interconnect due to the evenly spaced CPU memory pages.

This is different than the standard hybrid hash join [36], which
only caches the hash table of the first partition𝑅0. After partitioning
the data, the hybrid hash join directly joins the partitions, e.g.,
𝑅0 ⋈︁ 𝑆0. In contrast, the Triton join performs multiple partitioning
passes. Hypothetically, if the Triton join were to cache 𝑅0 and 𝑆0 to
speed up the second partitioning pass, the interconnect would be
idle while the GPU partitions and joins 𝑅0 and 𝑆0 in GPU memory.
Consequently, caching would reduce the transfer-compute overlap
and leave performance on the table.
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6 EVALUATION
In this section, we evaluate how well our Triton join scales to large
data volumes. We describe our experiment setup and configuration
in Section 6.1, and then present our results in Section 6.2.

6.1 Setup and Configuration
We first detail our evaluation environment and methodology. Next,
we give an overview of the data sets used in our evaluation. Finally,
we outline our experiments.

Environment. We conduct our measurements on an IBMAC922
Power System 8335-GTH. The system consists of two IBM POWER9
(“Monza”) CPUs and two Nvidia Tesla V100-SXM2 (“Volta”) GPUs.
Each GPU is connected to one CPU via NVLink 2.0. For PCI-e 3.0
measurements, we use an Nvidia V100-PCIE GPU. Each CPU has
16 cores clocked at 3.8 GHz, that support 4-way SMT and 128-bit
VSX SIMD instructions. Each GPU consists of 80 SMs running
at 1.53 GHz. The system contains 128 GiB of CPU memory per
socket, and each GPU has 16 GiB of GPU memory. The machine
runs Ubuntu 18.04 with Linux 5.0.0-25. Our experiments are imple-
mented in C++ and CUDA. We compile our code with GCC 8.4.0
and CUDA 10.2 with the flags: “-O3 -mcpu=native -mtune=native”.

Methodology. We measure the join throughput in billions of
tuples per second (G tuples/s). As in recent works [81, 129, 133], we
define the join throughput as the total input cardinality divided by
the total runtime (i.e., |𝑅 |+ |𝑆 |

runtime ). We report the mean and standard er-
ror over 10 runs for all experiments.We note that our measurements
are stable with a standard error below 5%.

Workloads. We specify our default workload similar to related
works [13, 72, 81, 133]. We use two base relations, R and S, each
consisting of 16-byte <key,record-id> tuples. We scale their car-
dinalities to |𝑅 | = |𝑆 | ∈ {128, 512, 2048} million tuples (M tuples)
each. R contains primary keys, and S references the primary keys
of R. We randomly shuffle the unique primary keys, generate the
foreign keys following a uniform random distribution in the range
𝑠 ∈ [1, |𝑅 |], and fill the record-ids with random values. We store
the relations in a column-oriented layout. In summary, we define
in-GPU and out-of-core scenarios with up to 61 GiB of data.

Settings. Unless mentioned otherwise, our measurements are
configured with the following settings and optimizations. All base
relations are stored in pageable CPU memory (i.e., non-pinned).
We allocate memory as 2 MiB huge pages [13, 129, 130] on the
NUMA node closest to the GPU, and preallocate the pages at boot
time [90] to avoid page fragmentation. The GPU directly accesses
CPU memory using cache-coherence [81]. We use our Hierarchical
partitioning algorithm with 6–10 radix bits for the first pass, and
our Shared variant with 9 radix bits for the second pass. For the
Triton and radix joins, we use a bucket-chaining hash table [48, 133]
with 2048 entries [133]. On the GPU, we store the hash table in
the scratchpad cache. For the no-partitioning join, we configure a
linear probing scheme with a 50% load factor [70, 119, 122]. In both
hashing schemes we use a multiply-shift hash function [37, 119].

Baselines.Wemeasure a radix-partitioned, multi-core hash join
implementation [18]. We port all optimizations used by Balkesen
et al. [13] to the POWER ISA as described below (our own imple-
mentation adds SIMD loads). We extend the code with an array
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join [129] (i.e., perfect hashing), and partition with 12–14 radix bits
in a single pass.

We optimize our CPU implementation (shown in Section 3) for
the POWER9 architecture. We tune memory reads with SIMD in-
structions and by disabling stride-N prefetching (DSCR = 0) [55],
as we observed that stride-N prefetching reduces sequential band-
width. Note that sequential prefetching is enabled. We optimize
the SWWC flush using SIMD stores to write 128-byte cachelines.
We note that in contrast to x86_64, the POWER ISA does not sup-
port non-temporal stores that bypass the cache [38, 55]. We tested
streaming store hints (dcbtst and dcbz), but these provided no
speedup. In our prefix sum, each SIMD lane builds a private his-
togram to avoid read-after-write hazards [53]. We tune the SMT
setting (16, 32, or 64 threads) for each data point.

Experiments.We conduct twelve experiments. First, we eval-
uate how our Triton join speeds-up join throughput compared
to a GPU no-partitioning join and a CPU radix-partitioned join.
We then explain why the Triton join outperforms no-partitioning
joins. After that, we profile the Triton join to account where time
goes. As the partitioning phase has a large performance impact, we
show how it is affected by the processor type (CPU vs. GPU). We
analyze the GPU partitioning algorithms in-depth, and then mea-
sure the speedup gained by caching. Next, we explore computing
the prefix sum on the CPU vs. the GPU. Furthermore, we analyze
build-to-probe ratios and wide tuples. Finally, we investigate power
efficiency and how future hardware might affect the Triton join.

6.2 Experiments
We conduct our experimental evaluation in this section.

6.2.1 Scaling the Triton Join vs. Baselines. In Figure 13, we scale
the base relations from 128–2048 million tuples per relation. The
relations have the same size, and consist of 16-byte tuples. The
total data size is thus 3.8–61 GiB, and is up to 122 GiB large when
considering the partitioned copy. This is close to the CPU memory
capacity of one 128 GiB NUMA node. We compare the throughput
of the Triton join to state-of-the-art join strategies on a CPU and a
GPU. In addition to the IBM POWER9, we include a Intel Xeon Gold
6126 (“Skylake-SP”) with 12 cores at 2.6 GHz. Note that Figure 1 is
a simplified version of this experiment with only perfect hashing.
Next, we compare the baselines.

CPU Radix Join. The performance of the POWER9 baseline
declines by 22% from 1.1 G tuples/s to 0.9 G tuples/s, due to in-
creasing the fanout from 212 to 214. Perfect hashing is 6–16% faster



PR
EP
RIN

T
Triton Join: Efficiently Scaling to a Large Join State on GPUs with Fast Interconnects SIGMOD’22, June 12–17, 2022, Philadelphia, PA, USA

No-Partitioning Join (Linear Probing)
No-Partitioning Join (Perfect)

Triton Join (Bucket Chaining)
61
.3

63
.6

67 51
64
.2 72
.9

0.4
25
.2

89.6

0
25
50
75
100

128 M 512 M 2048 M
Workload (Tuples)

Ut
ili
za
tio

n
(%
)

(a) Interconnect Utilization.

5.3

0.0
6

0 0 2.8
e-
05

3e
-0
6

1e
-0
6

4e
-0
6

1.6
e-
05

0
2
4
6

128 M 512 M 2048 M
Workload (Tuples)IO

M
M
U
Re

qu
es
ts
/T

up
le

(b) GPU TLB Misses

Figure 14: Interconnect usage of join algorithms.

than bucket chaining. In contrast, the Xeon is slower at 1.0–0.6
G tuples/s. Above 1408 M tuples, the SWWC buffers exceed the
Xeon’s 1.25 MiB L3 cache capacity (the POWER9 has 5 MiB/core).
Thus, the Xeon switches to two-pass partitioning and a 218 fanout.

GPU No-partitioning Join. The GPU baseline using perfect
hashing achieves 2.5 G tuples/s up to a relation size of 640 M tuples.
For larger relations, the throughput decreases to 0.5 G tuples/s for
sizes above 1024M tuples. This performance degradation occurs due
to exceeding the GPU memory capacity. In contrast, linear probing
reaches only 1.1 M tuples/s for large inputs due to exceeding the
GPU TLB range, which we analyze in detail in Section 6.2.2. As a
result, perfect hashing is up to 400× faster than linear probing.

GPU Triton Join. The Triton join performs within 85% of the
GPU baseline for relations up to 896 M tuples. Then, the Triton join
gracefully degrades from 2.3 to 1.7 G tuples/s. It retains 74% of its
peak throughput for 2048 M tuples of data. Thus, the Triton join is
1.9–2.6× faster than the POWER9 baseline, and up to 3.9× faster
than the GPU baseline with perfect hashing. The performance of
bucket chaining remains within 0–2% of perfect hashing.

Summary.We draw three conclusions. First, a no-partitioning
join does not scale well on GPUs with fast interconnects. Second,
the hashing scheme has a large impact on the no-partitioning join,
but only a small impact on the partitioned joins. Third, in all cases,
our Triton join outperforms the baselines beyond 1024 M tuples.

6.2.2 Why the Triton Join Outperforms No-partitioning Joins. To
better understand the join performance, we analyze the intercon-
nect utilization and GPU TLB misses using hardware performance
counters in Figure 14. We calculate the utilization as the measured
bandwidth divided by the theoretical limit. We measure the band-
width of CPU to GPU transfers including protocol overhead, for
which the theoretical limit is 75 GB/s. We use a GPU prefix sum to
obtain a full GPU profile. In addition, we count GPU TLB misses as
the number of address translation requests received by the CPU’s
IOMMU [22, 56]. Note that GPU vendors do not expose GPU TLB
hardware performance counters [9, 98, 137].

Interconnect Utilization. With an increasing data size, the
Triton join caches a smaller proportion of the data in GPU memory.
This increases interconnect utilization, as the join phase reads data
fromCPUmemorymore often. Closer inspection shows that the pre-
fix sum and partitioning phases are at 90–100% utilization, but the
join phase varies between 9–78%. In contrast, the no-partitioning
join utilizes the interconnect at up to 63.6% for hash tables in GPU
memory, but drops to 25.2% for out-of-core hash tables. With linear
probing, utilization drops further to 0.4%.

GPU TLB Misses. GPU TLB misses are the main reason why
the no-partitioning join with linear probing has a low interconnect
utilization. The 50% load factor doubles the hash table size of linear
probing compared to perfect hashing (64 GiB vs. 30.5 GiB for 2048
M tuples), and is rounded up to a power of two. Thus, the hash table
exceeds the GPU TLB range of 32 GiB by 2× (see Section 3.4.2). As
a result, the GPU issues a translation request to the IOMMU on
nearly every memory access, i.e., 5.3 requests per tuple. In contrast,
the Triton join issues an IOMMU request once per 105 tuples.

Overall, partitioning is effective at reducing TLB misses. Spilling
leads to intensive interconnect utilization. However, caching and
interconnect utilization are challenging to balance.

6.2.3 Time Accounting. As not all phases of the Triton join are
interconnect bound, we account where time goes in Figure 15. We
break down the execution time per kernel, and profile each kernel
to find out whether the GPU is executing (instruction issued) or
stalling (everything else). We configure a GPU prefix sum instead
of a CPU prefix sum to obtain a full GPU profile.

Time Breakdown.Most of the time is spent in the first partition-
ing pass, which always read data from CPU memory. Partitioning
(Part 1) takes 43.8–47.2% of the total time, and the prefix sum (PS 1)
takes 18.9–23.4%. In contrast, the join phase reads data from GPU
memory unless data is spilled to CPU memory. In our implemen-
tation, the join phase consists of four kernels: a prefix sum (PS 2)
and a partitioner (Part 2) for the second pass, a join task scheduler
(Sched), and the join (Join). Spilling increases the time spent in
the prefix sum, as it copies the data into GPU memory to avoid
redundant transfers by subsequent kernels.

Profiling. Both prefix sum passes and the first partitioning pass
are mostly interconnect bound due to memory dependencies. In
contrast, the second partitioning pass is mostly compute bound due
to issuing instructions, as it runs in GPU memory. Only first parti-
tioning pass and second prefix sum pass change with the workload,
due to spilling and reloading data. Counterintuitively, large data
sizes reduce memory stalls for partitioning, as high fanouts cause
additional work.

Our take away is that interconnect bandwidth limits the partition-
ing phase, but compute power limits the join phase. As bandwidth
outweighs computation, we focus our optimization efforts on the
interconnect in the following sections.

6.2.4 CPU-Partitioned vs. GPU-Partitioned Join. We evaluate the
impact of the processor used for partitioning on the end-to-end
join in Figure 16(a). Following that, we investigate the partitioning
phase in Figure 16(b). For a fair comparison, we reimplement the
strategy of Sioulas et al. [133] and optimize it for the POWER9 and
NVLink 2.0 (see Section 6.1). The join overlaps the transfer and
second partitioning pass over𝑅 with the first pass over 𝑆 , and caches
its working set in GPU memory. We compare this CPU-partitioned
radix join to our Triton join, that is GPU-partitioned. We run the
default workloads, and plot the throughput in G tuples/s for the
join and GiB/s for the partitioning.

End-to-End Join. The CPU-partitioned join reaches a through-
put of 1.3–1.8 G tuples/s. The 128M tuple workload has a 38% higher
throughput than the 2048 M workload, due to caching the working
set. In contrast, the Triton join achieves a 1.2–1.3× speedup.
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Partitioning. A closer inspection reveals why the Triton join is
faster. First, the GPU partitions data 1.5–1.7× faster than the CPU.
Second, the Triton join caches intermediate results in GPU memory,
leading to a lower transfer volume. In contrast, the CPU-partitioned
join first has to write results to CPU memory and then read them
again for the transfer to the GPU, which consumes memory band-
width. However, the CPU-partitioned join overlaps the partitioning
of the outer relation and the transfer of the inner relation. Thus, its
join pipeline is 3–13% faster than that of the Triton join.

Overall, our Triton join is faster than the CPU-partitioned join
due to partitioning data efficiently on the GPU, and the caching
optimizations that this design enables.

6.2.5 Partitioning Algorithms. In Figure 17, we evaluate the impact
of the partitioning algorithm on the join. We compare our Shared
and Hierarchical to the Linear and Standard radix partitioning
algorithms.We vary the algorithm used in the first pass andmeasure
the end-to-end join throughput. We scale the base relations from
128 to 2048 M tuples. We disable caching to eliminate side-effects.
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Figure 18: Profiling state-of-the-art partitioning algorithms.

Observations. Our Shared algorithm achieves a throughput of
1.5–1.6 G tuples/s up to a size of 1280 M tuples. At this threshold,
the flush granularity drops below 128 bytes due to the high fanout.
For larger relation sizes, the throughput of Shared reduces to 0.9–1
G tuples/s. In contrast, our Hierarchical variant performs between
1.4–1.5 G tuples/s over the whole range, and degrades gracefully.
Thus, Hierarchical achieves a speedup of 1.1–1.9× and 3.6–4× over
the Linear and Standard algorithms, respectively.

Overall, the choice of the partitioning algorithm is important
for scaling a GPU join. Most notably, our Hierarchical algorithm
improves the scaling to large data sizes.

6.2.6 Why Hierarchical Outperforms the State-of-the-Art. To reveal
the superior the partitioning throughput, we investigate all parti-
tioning algorithms with hardware performance counters. We use
60 GiB of data, which are sufficiently large to incur TLB misses (see
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Section 3.4.2). The GPU reads 16-byte tuples from CPU memory,
and writes the results back to CPU memory.

Throughput. In Figure 18(a), wemeasure the partitioning through-
put in isolation while increasing the fanout. We highlight three
aspects. First, the Linear algorithm never achieves the bidirectional
interconnect bandwidth of 55.9 GiB/s. It reaches 50.7 GiB/s for
one partition (i.e., a memcopy), but then drops to 42.4 GiB/s for
a fanout of 2. Second, Shared partitions at 54 GiB/s, but does not
scale beyond a fanout of 64. In contrast, our Hierarchical algorithm
achieves 38.3 GiB/s even at a fanout of 2048.

Write Coalescing. To reveal the reasons for the performance,
we begin by recording the tuples per memory transaction in Fig-
ure 18(b). We find that Linear only partially coalesces writes. The
reason is that sorting tuples by partition usually does not result in
batches of exactly 128 bytes. High fanouts increase this effect as
the tuples cached per partition decrease. In contrast, both of our
algorithms perfectly coalesce writes by design.

NVLink Overhead. Ineffective coalescing leads to the high
physical transfer volumes in Figure 18(c). This overhead results
from the interconnect packet header attached to each payload, and
is higher for small payload sizes. In the case of Linear, interconnect
overhead accounts for up to 156% of the transfer volume. In contrast,
our Hierarchical algorithm remains below 43%.

GPU TLB Misses. In Figure 18(d), we unmask the performance
barrier at a fanout of 64 by measuring the IOMMU requests. Going
from 64 to 128 partitions causes the TLB miss rate of Shared to
increase by 33×, i.e., a miss on every second flush. In contrast, at a
fanout of 2048 Hierarchical achieves a 1436×, 100×, and 771× lower
miss rate compared to Standard, Linear, and Shared, respectively.

ComputeUtilization.We inspect if computation limits through-
put by reporting the “percentage of issue slots that issued at least
one instruction” [98] in Figure 18(e). Typically, utilization remains
below 5%. Only Hierarchical utilizes up to 43% of the GPUwith high
fanouts. The trend starts when the buffer size drops to 16 tuples at
a fanout of 256, and flushing no longer occupies a full warp.

GPU Stall Reason. In Figure 18(f), we reveal why compute
utilization is low. Shared and Hierarchical stall on memory depen-
dencies 65–90% of the time. In contrast, Linear additionally stalls
on synchronization and pipeline busy [98]. TLB misses manifest
themselves as instruction latency, i.e., execution dependency and
pipeline busy stalls. For Standard, the stall counters overflow for
fanouts of 512–2048 due to its runtime of 10 minutes [135].

We conclude that the data access pattern and TLB miss tolerance
of our Shared and Hierarchical algorithms are the main reasons
they outperform the Standard and Linear approaches.

6.2.7 Caching the Working Set in GPU Memory. We explore the
effect of caching on the throughput of the no-partitioning join and
the Triton join in Figure 19. We scale the cache size in GPUmemory
from 0 to 14.9 GiB. For the no-partitioning join, we cache part of
the hash table [81]. We note that the Triton join with no cache is
effectively a two-pass radix join, and that a part of the GPUmemory
is required for the join pipeline.

GPU No-Partitioning Join. Caching the entire hash table in-
stead of not caching anything increases throughput by 4.6–4.8× for
the 128 M and 512 M workloads using perfect hashing. In contrast,
caching has no effect on the 2048 M workload. The reason is the
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Figure 19: Scaling the GPU memory cache size.
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Figure 20: Prefix sum on the CPU vs. on the GPU.

high cache miss rate of 50%. A miss rate of only 4% reduces the gain
to 1.8× for 512 M with linear probing. In contrast, for 2048 M with
linear probing the reason is that GPU TLB misses slow down the
join (see Section 6.2.2).

GPU Triton Join. In contrast, the 128 M and 512 M workloads
improve performance by 1.4×, and the 2048 M workload by 1.1×.
However, the 128 M workload slows down by 1.5% when the whole
working set is cached, instead of only 79% of the working set. This
is because the GPU memory and interconnect together provide
more bandwidth than GPU memory alone [1, 111].

Our take-away is that the Triton join robustly scales with the
cache size, and avoids sharp performance cliffs caused by the TLB
range and the GPU memory capacity.

6.2.8 CPU vs. GPU Prefix Sum. We determine which processor
computes the prefix sum faster.We first assess the effect of the prefix
sum on the end-to-end join (Figure 20(a)), and then measure the
prefix sum throughput achieved by the CPU and GPU (Figure 20(b)).
We run the experiment using our Triton join on the default working
sets with 128, 512, and 2048 M tuples. We show the prefix sum
throughput in GiB/s to enable a comparison with the memory
bandwidth. We highlight that the prefix sum reads a single column
per relation, due to the columnar layout.

Triton Join.We observe that when using the CPU, the Triton
join achieves a throughput of 2.2 G tuples/s for the 128 M and 512 M
workloads, and 1.6 G tuples/s for the 2048Mworkload. These results
are 1.1× faster than when computing the prefix sum on the GPU.

Prefix Sum. The CPU achieves up to 129.6 GiB/s, and is able to
nearly saturate the CPU memory bandwidth. For the 2048 M tuples
workload, the throughput decreases to 96 GiB/s. In contrast, the
throughput of the GPU is constant at 63 GiB/s. The reason is that
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Figure 21: Varying build-to-probe ratios with the Triton join.
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reads are unidirectional transfers, and thus the GPU is constrained
by the interconnect bandwidth.

Overall, the CPU is able to sequentially scan data faster than the
GPU, and thus computes the prefix sum 1.6–2.2× faster. However,
the prefix sum has a small impact on the overall join throughput.

6.2.9 Build-to-probe Ratios. In Figure 21, we measure the through-
put of the Triton join for different build-to-probe ratios. For each
workload, we scale the ratio from 1:1 to 1:32 while keeping the data
constant at 61 GiB. For example, for the 2048 M workload 1:1 means
2048:2048 M tuples, and 1:32 means 124:3972 M tuples.

Observations. The no-partitioning join is subject to two effects.
First, the GPU memory capacity causes an abrupt performance
cliff. The extreme case is linear probing, for which a 1:32 ratio is
3414× faster than 1:1 in the 2048 M workload. Second, reducing the
build size within GPU memory causes a 60% speedup. Dissecting
the perfect hashing variant shows that the probe throughput is 4.3
G tuples/s, whereas the build throughput is only 1.8 G tuples/s. In a
deeper investigation, we find that random GPU memory reads are
3.2–6× faster than writes. In contrast, the throughput of the Triton
join remains stable between 1.66-1.88 G tuples/s. This increase
results from reducing the fanout from 1024 to 64 partitions, which
increases partitioning throughput.

We conclude that the Triton join is insensitive to the build-to-
probe ratio, due to partitioning the large outer relation. Thus, a
no-partitioning join should be preferred for high ratios.

6.2.10 Tuple Width. The relation size is determined both by the
number and width of tuples. In Figure 22, we investigate how ma-
terializing wide tuples affects the Triton join. Instead of reading
two attributes, we partition only the join key and generate row IDs
on-the-fly in the first pass. Thus, the join results in a join index,
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Figure 24: Compute power required for high throughput.

with which we materialize and aggregate the out-of-core, 8-byte
payload attributes of the outer relation.

Observations. At 2 G tuples/s and 1.5 G tuples/s, constructing
a join index (i.e., no payload) achieves a similar throughput as
our default setup, which early-materializes one payload attribute.
In contrast, late materialization incurs a random CPU memory
access per attribute, which causes performance to degrade to 86–88
M tuples/s for 16 payloads. The 2048Mworkload stops at 2 payloads
due to reaching the CPU memory capacity.

In conclusion, partitioning leads to expensive random accesses
during late materialization. Our results indicate that materializing
wide, out-of-core tuples requires further investigation.

6.2.11 Power Efficiency. In Figure 23, we compare the performance
per Watt of the CPU and the GPU. We measure the energy con-
sumed by the system, and calculate the normalized throughput per
power unit averaged over 50 joins. We subtract the idle power of
both GPUs for the CPU radix join (2×32𝑊 ) to simulate a CPU-only
system. At idle the AC922 system consumes 290 W. The joins are
configured with perfect hashing.

Observations. The CPU turns out to be the most power-efficient
processor at 7–9.4 M tuples/s/W. However, the GPU joins are not
competitive due to the CPU’s high idle power of 58–62 W. Under
load the GPU consumes 62–80 W, while the CPU consumes 178–
206 W. We must consider that the GPU use the CPU’s I/O facilities
for interconnect transfers, which takes 10-11 W.

Overall, the CPU join is more power-efficient than our Triton
join, as the GPU is hosted by a CPU.

6.2.12 Compute Power Scaling. We explore how future hardware
might affect the Triton join by scaling number of streaming multi-
processors in Figure 24. Wemeasure the throughput as a percentage
of the maximum, and explain the scaling behavior by examining
where the join spends time in the 512 M tuples workload.

Workloads.We observe that 28 SMs suffice to achieve 75% of
the peak throughput for the 128 M and 512 M workloads. The 95%
mark is passed for all our workloads with 55 SMs.

Time Breakdown. The Triton join scales quickly at first, as the
first and the second partitioning passes are compute bound below
25 SMs. With more than 25 SMs, profiling shows that the first pass
becomes interconnect bound and stops scaling. In contrast, the
second pass remains compute bound and continues to scale, but
with diminishing returns. As a result, the overall scaling levels out.
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We conclude that the Triton join is interconnect bound. A faster
interconnect would increase join throughput, whereas a faster GPU
would not yield significant gains.

6.3 Discussion
In this paper, we have investigated how fast interconnects can
resolve the memory capacity limitation to scale the state of a GPU
join, and have gained the following key insights.

GPUswith fast interconnects scale to a large join state. Fast
interconnects provide sufficient bandwidth to spill large state to
CPU memory. A 2× speedup over a strong CPU baseline is possible
even when the state size exceeds the GPU memory capacity.

GPUs robustly spill state to CPU memory. We learned that
partitioning and caching can be combined to gracefully degrade
throughput. Thus, we are able to avoid performance cliffs caused
by the TLB range and the GPU memory capacity.

GPUs are able to process tasks end-to-end. Fast interconnects
obviate CPU involvement. For example, the CPU no longer must
partition data or manage transfer pipelines. This enables DBMSs to
efficiently use heterogeneous hardware.

Interconnect-awareness enables fast random accesses. Per-
fect coalescing saturates a fast interconnect. Thus, adapting the
access pattern to the interconnect makes new use-cases possible.

Concurrent kernel execution is a versatile replacement for
DMA copy engines. In addition to overlapping computation and
transfers from pageable memory, kernels are able to directly com-
pute or reshape the data. Thus, concurrent kernel execution helps
to reduce GPU memory traffic and improve data access patterns.

Interconnect bandwidth is no longer the main bottleneck.
In some cases, the high interconnect bandwidth shifts the bottleneck
to other resources, such as random access bandwidth, TLB misses,
and computation. Optimization becomes challenging, as multiple
constraints can simultaneously affect different parts of the program.

Summary. Fast interconnects enable GPUs to cover a broader
spectrum of database use-cases, but we require new algorithms to
fully exploit the performance potential of fast interconnects.

7 RELATEDWORK
In this section, we contrast our paper to related work.

Scalable Co-Processing. Recent GPU-enabled DBMSs [24, 25,
30, 31, 40, 48, 52] and machine learning frameworks [10, 82] are
able to process data sets larger than GPU memory. Our work com-
plements these systems by scaling the operator state, thus enabling
large data sizes.

Relational and ML operators stream data from CPU memory to
the GPU to transfer data efficiently across the interconnect [66,
70, 80, 122]. In contrast to these works, we scale operator state in
addition to scaling the data size.

Join Co-Processing. Speeding up joins on co-processors has
been of particular interest for database research [48–51, 66, 89,
91, 111, 142]. Recent works investigate radix-partitioned joins on
GPUs [104, 124], MICs [27, 63, 113], and FPGAs [26, 46, 47, 76].
However, these approaches limit the join state to the co-processor’s
on-board memory, or assume a coupled architecture in which the
co-processor has direct CPU memory access. In contrast, our Triton
join handles large state on a discrete GPU.

Radix Partitioning on Co-Processors. Radix partitioning has
been investigated on GPUs, MICs, and FPGAs. Early GPU works
suggest a binary divide-and-conquer approach [126, 127], that re-
quires a data pass per radix bit. More recently, GPUs with atomic
additions enable a single-pass approach that sorts data in scratch-
pad memory [124, 139]. In contrast, our Shared algorithm extends
software write-combining [127] to fully coalesce writes on GPUs.

SWWC partitioning has been ported to MICs by SIMD vector-
ization [114–116]. Our Shared is structurally similar to vectorized
SWWC. However, in contrast to SIMD partitioning, Shared saves
cache space by sharing buffers among warps. In analogous terms,
in our design, SMT threads share buffers in the L1 cache, in addition
to SIMD vectorization. To the best of our knowledge, no prior work
considers such a design on any processor architecture.

On FPGAs, write-combining can be implemented in hardware in-
stead of in software [67, 140]. However, previous studies have been
limited by slow interconnects that incur a data transfer bottleneck.

End-to-End Join Queries. Join state compression [17, 20, 41,
77], filtering [14, 45, 128] and pipelining [15, 146] the outer relation,
and efficient tuple materialization [85, 115, 116, 145] have been
proposed to speed-up joins. These optimizations complement our
work and remain open challenges for GPUs with fast interconnects.

Transfer Bottleneck. Previous works consider scaling opera-
tor state for joins [45, 112, 133], sorting [139], and the primitives
underlying these operators [43]. However, these works assume that
PCI-e causes a transfer bottleneck. In contrast, we take advantage
of fast interconnects by proposing a new approach that eliminates
CPU pre-processing steps.

Fast Interconnects. GPUs with NVLink have been explored
to speed up query processing. Recent works investigate the data
transfer bottleneck [81], lazy transfers and scan sharing for HTAP
DBMSs [118], multi-GPU joins [41, 106, 123], CSV loading [74],
and sorting [83]. FPGAs with OpenCAPI have been exploited to
scale the outer relation of a join [68] and data loading [107, 108]. In
contrast, we show that by carefully designing algorithms for fast
interconnects, GPUs efficiently accelerate joins with a large state.

8 CONCLUSION
Fast interconnects are not a silver bullet for large-scale hash joins.
Our analysis of NVLink 2.0 reveals that interconnect overhead
and TLB misses reduce performance. We propose our Triton join
to overcome these challenges. Our hardware insights lead to a
GPU-partitioned join strategy based on a new GPU partitioning
algorithm. Overall, our Triton join scales to large data volumes at up
to 400× faster performance by being aware of the fast interconnect.

We provide our source code for future research at:
https://github.com/TU-Berlin-DIMA/fast-interconnects
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