
BigBench Specification V0.1

BigBench: An Industry Standard Benchmark for Big Data
Analytics

Tilmann Rabl1, Ahmad Ghazal2, Minqing Hu2, Alain Crolotte2, Francois
Raab3, Meikel Poess4, Hans-Arno Jacobsen1

1 University of Toronto
2 Teradata Corp.
3 InfoSizing Inc.
4 Oracle Corp.

Abstract. In this article, we present the specification of BigBench, an
end-to-end big data benchmark proposal. BigBench models a retail prod-
uct supplier. The benchmark proposal covers a data model and a set of
big data specific queries. BigBench’s synthetic data generator addresses
the variety, velocity and volume aspects of big data workloads. The struc-
tured part of the BigBench data model is adopted from the TPC-DS
benchmark. In addition, the structured schema is enriched with semi-
structured and unstructured data components that are common in a
retail product supplier environment. This specification contains the full
query set as well as the data model.

1 Introduction

Big data (BD) is about increasing volume of data from a variety of sources
including structured, semi-structured and unstructured data. Some of the BD
sources are typically generated with high velocity like click streams and sensors
logs. This wealth of data provides a lot of new analytic and business intelligence
(BI) opportunities like fraud, churn and customer loyalty analysis.

Many commercial and open source systems were built or extended to store
and process BD. These tools are mostly parallel database management systems
or MapReduce (MR) based systems. There are no standards yet on BD process-
ing, but for the most part these systems provide SQL, UDF, MR or a mix of
these as an interface.

Even though there are no standards for BD yet, still there is a need to measure
and compare the performance of the different systems that claim to support BD.
Recently, there are quite a few efforts in the area of big data benchmarking (e.g.
PigMix5, GridMix6, GraySort 7). Some of these benchmarks are focused on one
component of the system and others are focused on specific MR systems.

5 PigMix – https://cwiki.apache.org/confluence/display/PIG/PigMix
6 GridMix – http://hadoop.apache.org/docs/mapreduce/current/gridmix.html
7 Sort Benchmark Home Page – http://sortbenchmark.org

In this article, we present the specification of the end to end big data bench-
mark BigBench. BigBench is based on a fictitious retailer who sells products
to customers via physical and online stores. This specification completes our
previous publication that covered details on the data model, synthetic data gen-
erator, workload description, and metrics [1]. The workload queries are specified
in English and in Teradata Aster’s SQL-MR syntax [2, 3]. We introduce new
metrics specific to BD data loading and workload execution. The feasibility of
the proposal is shown by applying it on the Teradata Aster DBMS (TAD). This
experiment involves generating 200 gigabyte of data and loading it into TAD.
The workload is executed as a single stream of queries.

The rest of this article is structured as follows. In Section 2, we describe the
BigBench data model. In Section 3, we give a short overview of the BigBench
data generation. We describe the BigBench workload in Section 4. Section 5
shows the results of our proof-of-concept evaluation of BigBench on Teradata
Aster. We conclude in Section 6. In Appendix A, we list all 30 BigBench queries
and Appendix B contains the complete schema for BigBench.

2 Data Model

BD is not about volume only. Douglas Laney described the 3 Vs of BD refer-
ring to volume, velocity and variety [4]. Velocity is an important issue in BD
since such data like clicks or sensor information are produced at an increasing
rate. Also, data comes in different forms like structured relational tables, semi-
structured key-value web clicks or unstructured social data text. Our data model
has the volume, variety and velocity elements as described in the following.

Unstructured
Data

Semi-Structured Data

Structured Data

Sales

Customer

Item Marketprice

Web Page

Web Log

Reviews

Adapted
TPC-DS

BigBench
Specific

Fig. 1. Simplified BigBench Data Model

The variety property of our model is illustrated in Figure 1. The structured
part of BigBench is an adaption of the TPC-DS model which also depicts a
product retailer [5]. We borrowed the store and online sales part from that
model and added a table for competitor prices of the retailer.

The structured part is enriched with semi-structured and unstructured data
shown in the lower and right part of Figure 1. The semi-structured part’s content
is composed by clicks made by customers and guest users visiting the retailer
site. Some of these clicks are for completing a customer order. As shown in Figure
1, the semi-structured data is logically related to the Web Page, Customer and
Sales tables in the structured part. Our design assumes the semi-structured data
to be a key-value format similar to Apache web server log format.

Typically, database and MR systems would convert such format to a table/file
with a schema like (DateID, TimeID, SalesID, WebPageID, UserID). However,
we do not require such conversion since some systems may choose to run analyt-
ics on the native key-value format. Product reviews is a growing source of online
retail data. We found such source to be an excellent representation for the un-
structured data in our model. Figure 1 shows product reviews in the right part
and its relationship to Date, Time, Item, Users and Sales tables in the struc-
tured part. One implementation of the product reviews is a single table/file with
a structure like (DateID, TimeID, SalesID, ItemID, ReviewRating, ReviewText).
The full schema is specified in SQL in Apendix B.

3 Data Generation

Our work also provides a design and implementation of a data generator for the
proposed BigBench data model. Our data generator is based on an extension of
PDGF [6]. PDGF is a parallel data generator that is capable of producing large
amounts of data for an arbitrary schema. The existing PDGF can be used to
generate the structured part of the BigBench model. However, it is not capable
of generating the unstructured product reviews text. First, PDGF is enhanced
to produce a key-value data set for a fixed set of required and optional keys.
This is sufficient to generate the weblogs part of BigBench.

The main challenge in product reviews is producing the unstructured text.
We developed and implemented an algorithm that produces synthetic text based
on sample input text. The algorithm uses a Markov Chain technique that ex-
tracts key words and builds a dictionary based on these key words. The new
algorithm is applied for our use case by using some real product reviews from
an online retailer for the initial sample data. PDGF interacts with the review
generator through an API sending a product category as input and receiving a
product review text for that category.

The volume dimension of our model is far simpler than the variety discussion
and previous data generators had a good handle on that. PDGF handles the
volume well since it can scale the size of the data based on a scale factor. It also
runs efficiently for large scale factors since it runs in parallel and can leverage
large systems dedicated for the benchmark.

For our proof-of-concept system, the tables that are originating from TPC-
DS are generated using DSdgen, the TPC-DS standard data generator8.

4 Workload

The second major component of BigBench is the specification of workload queries
applied on the BigBench data model. In terms of business questions, we found the
big data retail analytics by McKinsey serves our purpose given that BigBench
is about retail [7]. In [7] five major areas of big data analytics are described
namely: marketing, merchandising, operations, supply chain and new business
models. These areas are further broken down into sub-functions. For example,
marketing can be broken down into cross selling, sentiment analysis, etc. We
used these 5 areas and added reporting as a sixth area. We postulate that a big
data benchmark should have some traditional business intelligence or reporting
type of queries.

In addition to the big data retail business levers above, we looked at the
different technical aspects the BigBench queries should measure. We identified
the following three areas:

– The type of the input data the query is addressing. We made sure each
of the structured, semi-structured, unstructured and their combinations are
covered in the queries. Out of the 30 queries 18 (60%) are exclusively on the
structured data, 7 (23.3%) incorporated semi-structured data, and 5 (16.7%)
additionally incorporated unstructured data.

– The type of processing appropriate for the query. This dimension targets the
two common paradigms of SQL (and similar constructs like HQL) and MR.
Thus, our queries can be answered by SQL, others by MR or a mix of both.
Note that some of the perceived MR queries can also be written through
complex SQL constructs like window functions and therefore we identify the
two classes in this dimension as simple SQL and MR or complex SQL. In this
definition, 12 (40%) queries are declarative (pure SQL), 5 (16.7%) queries
are procedural (MR), and 13 (43.3%) are a mix.

– The third important technical dimension is the different algorithms of MR
processing as described by the Apache MAHOUT system. Classes of algo-
rithms used in the BigBench queries are statistical analysis (6 queries), path
analysis (5 queries), text analysis (4 queries), association mining (4 queries),
classification (1 query), clustering (3 queries), reporting (8 queries).

The categorization along technical dimensions with corresponding query num-
bers is shown in Table 4. The implementation technique is either declarative,
procedural, or mixed. Declarative queries are pure SQL queries, that could
also be processed by stock relational database systems. Procedural queries are
pure MapReduce implementations that do not need joins. Mixed queries contain
MapReduce functions along with relational operations, such as joins or views.

8 TPC-DS and DSDgen is available at http://www.tpc.org/tpcds/default.asp

Query Type Queries Percent Data Type Queries Percent

Declarative
6, 7, 9, 13,
14, 16, 17, 19,
21, 22, 23, 24

40% Structured

1, 6, 7, 9, 13,
14, 15, 16, 17, 19,
20, 21, 22, 23, 24,
25, 26, 29

60%

Mixed

1, 4, 5, 8,
11, 12, 15,
18, 20, 25,
26, 29, 30

43% Semi-Structured
2, 3, 4, 5,
8, 12, 30

23%

Procedural
2, 3, 10,
27, 28

17% Unstructured
10, 11, 18,
27, 28

17%

The queries were specified to cover the areas of big data analytics as well
as the technical dimensions of big data processing. Below is an overview of the
business functions as proposed by McKinsey [7] and the associated BigBench
queries:

Marketing 18.6%
Cross-selling 1,2,3,29,30
Customer micro-segmentation 4,5,6,9,25,26
Sentiment analysis 8,10,11,18,28
Enhancing multichannel consumer experiences 12,13

Merchandising 16.7%
Assortment optimization 14,21,27
Pricing optimization 16,17

Operations 13.3%
Performance transparency 7,15
Customer return analysis 19,20

Supply chain 6.7%
Inventory management 22,23

New business models 3.3%
Price comparison 24

In Appendix A, we list all 30 BigBench queries. It has to be noted that some
of the queries are identical to TPC-DS queries, this is true for the SQL code as
well as the English description. For those queries, we list the original template
number in brackets in the description below.

5 Evaluation

We chose to initially run BigBench on the Teradata Aster DBMS. TAD has all
features needed to store and process big data. Data can be stored as tables and
queries can be executed using the SQL-MR interface that extends declarative
SQL with MR processing.

TAD is based on the nCluster technology. nCluster is a shared-nothing paral-
lel database, optimized for data warehousing and analytic workloads [2]. nCluster

manages a cluster of commodity server nodes, and is designed to scale out to
hundreds of nodes and scale up to petabytes of active data.

The test was executed on a 8 node Teradata Aster appliance. Each node is
a Dell server with two quad-core Xeon 5500 at 3.07Ghz and hardware RAID 1
with 8 2.5” drives.

For the test, DSdgen is used to produce the selected TPC-DS tables included
in our data model. We used PDGF to generate the additional parts of the data
model. The new parts produced by PDGF include the Item marketprice table,
an Apache-style web server log, and the XML configuration for the online review
generator. PDGF is also configured to generate references (PK-FK relationships)
in the new data that matches the TPC-DS data. In the future, we plan on
extending PDGF to handle the generation of TPC-DS tables without the need
for DSdgen.

The data was loaded into TAD as tables. The web logs were parsed and con-
verted to a table similar to the structure shown in Appendix B. Product reviews
are also interpreted as a table assuming the review text as a VARCHAR(5000).

As a proof of concept, we executed the workload as a single stream without
velocity on a ca. 130 GB data set. This corresponds to a scale factor 100 in TPC-
DS. Since we adapt the velocity methodology from TPC-DS, it and can easily
be implemented with a simple driver that periodically adds data to the system
and re-submits a new stream of queries. Furthermore, the addition of concurrent
query streams can be handled similarly to benchmarks such as TPC-H.

The query processing times for the individual queries can be seen below.

Query run-time (sec) Query run-time (sec)
A1 200 A16 8700.045
A2 12.529 A17 146.879
A3 19.948 A18 1507.33
A4 33.345 A19 11.368
A5 9.462 A20 345
A6 11.652 A21 109.817
A7 1.176 A22 114.555
A8 12.581 A23 1113.373
A9 8.698 A24 11.714
A10 24.847 A25 254.474
A11 2713.042 A26 2708.261
A12 918.575 A27 4.617
A13 1572 A28 381.005
A14 7.952 A29 7.201
A15 41.747 A30 6208

6 Conclusion

In summary, we present the first end-to-end benchmark for big data analytics.
While previous work focused on one type of data or processing, we produced

30 queries that address all the three technical dimensions described above. The
queries cover all the six major business areas of DB analytics mentioned earlier.
We developed and implemented a novel technique for producing unstructured
text data and integrated it with traditional structured data generators. We con-
ducted a proof of concept of the proposal by executing it on the Teradata Aster
DBMS.

Currently, all queries are translated to the Hadoop eco-system. The complete
data generator will be migrated to PDGF, which will make it possible to gen-
erate more complex dependencies consistently across the different parts of the
schema. This will add correlations that are desirable for exercising analytical
queries. Although, basic metrics were specified in [1], we will extend this part of
the specification with additional approaches, directly targeting big data related
questions.

References

1. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen., H.A.:
BigBench: Towards an industry standard benchmark for big data analytics. In:
Proceedings of the ACM SIGMOD Conference. (2013)

2. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: A Practical Approach
to Self-Describing, Polymorphic, and Parallelizable User-Defined Functions. PVLDB
2(2) (2009) 1402–1413

3. Teradata Aster: Teradata Aster Big Analytics Appliance 3H - Analytics Foundation
User Guide. Release 5.0.1 edn. (2012) http://www.info.teradata.com/edownload.
cfm?itemid=123060004.

4. Laney, D.: 3D Data Management: Controlling Data Volume, Velocity and Variety.
Technical report, Meta Group (2001)

5. Nambiar, R.O., Poess, M.: The Making of TPC-DS. In: VLDB. (2006) 1049–1058
6. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A Data Generator for Cloud-Scale

Benchmarking. In: TPCTC. (2010) 41–56
7. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh,

C., Byers, A.H.: Big data: The Next Frontier for Innovation, Com-
petition, and Productivity. Technical report, McKinsey Global Insti-
tute (2011) http://www.mckinsey.com/insights/mgi/research/technology_and_
innovation/big_data_the_next_frontier_for_innovation.

A BigBench Queries

Below all 30 queries of the BigBench proposal are shown. The queries are speci-
fied in English, to give a high-level understanding what the business question of
each query is. Additionally, an SQL-MR syntax-based description is given [2, 3].

Query 1 Find products are sold together frequently in given stores. Only prod-
ucts in certain categories sold in specific stores are considered, and ”sold to-
gether frequently” means at least 50 customers bought these products together
in a transaction.

SELECT pid1 AS item1 , pid2 AS item2 , COUNT (*) AS cnt
FROM basket_generator (ON

(SELECT s.ss_ticket_number AS oid , s.ss_item_sk AS pid
FROM store_sales100 s

INNER JOIN item100 i ON s.ss_item_sk = i_item_sk
WHERE i.i_category_id in (1,4,6) and s.ss_store_sk = 10

PARTITION BY oid
basket_size (2)
basket_item(’pid’)
item_set_max (500)

)
GROUP BY 1,2

HAVING COUNT(pid1) > 49
ORDER BY 1,3,2;

Listing 1.1. Query 1

Query 2 Find the top 30 products that are mostly viewed together with a given
product in online store. Note that the order of products viewed does not matter.

SELECT pid1 AS item1 , pid2 AS item2 , COUNT (1) AS cnt
FROM basket_generator (ON

(SELECT wcs_user_sk AS cid , wcs_item_sk AS pid
FROM web_clickstreams

WHERE wcs_item_sk IS NOT NULL
AND wcs_user_sk IS NOT NULL

)
PARTITION BY cid
basket_size (2)
basket_item(’pid’)
item_set_max (500)

)
WHERE pid1 IN (1416 ,9082 ,1547)
GROUP BY 1,2
ORDER BY 1,3,2
LIMIT 30;

Listing 1.2. Query 2

Query 3 Find the last 5 products that are mostly viewed before a given product
was purchased online. Only products in certain categories and viewed within 10
days before the purchase date are considered.

SELECT lastviewed_item , purchased_item , COUNT (*)
FROM nPath (ON web_clickstreams

PARTITION BY wcs_user_sk
ORDER BY wcs_click_date_sk , wcs_click_time_sk
MODE (’NONOVERLAPPING ’)

PATTERN (’A+.B’)
SYMBOLS (true AS A, wcs_sales_sk IS NOT NULL AS B)
RESULT (

LAST (wcs_item_sk OF A) AS lastviewed_item ,
LAST (wcs_click_date_sk OF A) AS lastviewed_date ,

FIRST (wcs_item_sk OF B) AS purchased_item ,
FIRST (wcs_click_date_sk OF B) AS purchased_date

)
)

WHERE purchased_item = 16891
AND purchased_date - lastviewed_date < 11

GROUP BY 1,2;

Listing 1.3. Query 3

Query 4 Shopping cart abandonment analysis: For users who added products in
their shopping carts but did not check out in the online store, find the average
number of pages they visited during their sessions.

DROP VIEW sessions;

CREATE VIEW sessions AS (
SELECT *

FROM sessionize (ON
(SELECT c.wcs_user_sk as uid , c.wcs_item_sk as item ,

w.wp_type as wptype ,
d.d_date + t.t_time*INTERVAL ’1 second ’ as tstamp

FROM web_clickstreams c, web_page w, date_dim d, time_dim t
WHERE c.wcs_web_page_sk = w.wp_web_page_sk

AND c.wcs_click_date_sk = d.d_date_sk
AND c.wcs_click_time_sk = t.t_time_sk
AND c.wcs_user_sk IS NOT NULL

) AS clicks
PARTITION BY uid

ORDER BY tstamp
timecolumn (’tstamp ’)

timeout (’300’)
)

ORDER BY uid , tstamp
);

DROP VIEW cart_abadon;
CREATE VIEW cart_abadon AS (

SELECT *
FROM nPath(ON sessions

PARTITON BY sessionid
ORDER BY tstamp
MODE (’NONOVERLAPPING ’)

PATTERN (’C*.A.B*$’)
SYMBOLS (wptype = ’dynamic ’ AS A, true as C, wptype <> ’order’ AS B)
RESULT (FIRST_NOTNULL (sessionid OF C) AS sid ,

LAST_NOTNULL (tstamp OF B) AS end_s ,
FIRST_NOTNULL (tstamp OF C) AS start_s

)
)

);

SELECT c.sid , COUNT (*) AS s_pages
FROM cart_abadon c, sessions s

WHERE s.sessionid = c.sid
GROUP BY 1;

Listing 1.4. Query 4

Query 5 Build a model using logistic regression: based on existing users online
activities and demographics, for a visitor to an online store, predict the visitors
likelihood to be interested in a given category.

DROP VIEW logstic_reg_t;
CREATE VIEW logstic_reg_t AS (

SELECT c_customer_sk , college_education , male ,
CASE WHEN clicks_in_category > 2 THEN true ELSE false END AS label

FROM (
SELECT c_customer_sk ,

CASE WHEN (cd_education_status = ’Advanced Degree ’
OR cd_education_status = ’College ’
OR cd_education_status = ’4 yr Degree ’
OR cd_education_status = ’2 yr Degree ’)

THEN TRUE ELSE FALSE END AS college_education ,
CASE WHEN cd_gender = ’M’ THEN TRUE ELSE FALSE END AS male ,

SUM (CASE WHEN i_category=’Books’ THEN 1 ELSE 0 END) AS
clicks_in_category

FROM customer , customer_demographics , item , web_clickstreams
WHERE wcs_user_sk = c_customer_sk

AND c_current_cdemo_sk = cd_demo_sk
AND wcs_item_sk = i_item_sk

GROUP BY 1,2,3) C
);

DROP TABLE books_interests;
SELECT *

FROM log_regression (
ON (SELECT 1)
PARTITION BY 1
DATABASE(’benchmark ’)
USERID(’benchmark ’)
PASSWORD(’benchmark ’)
INPUTTABLE(’logstic_reg_t ’)
OUTPUTTABLE(’books_interests ’)
COLUMNNAMES(’label’,’college_education ’,’male’)

);

Listing 1.5. Query 5

Query 6 (TPC-DS 4) Find customers who spend more money via web than in
stores for a given year. Report customers first name, last name, their country of
origin and identify if they are preferred customer.

BEGIN;
DROP TABLE IF EXISTS q04_year_total_8;

CREATE TEMP TABLE q04_year_total_8 (
customer_id VARCHAR (16),
customer_first_name CHAR (20),
customer_last_name CHAR (30),
c_preferred_cust_flag CHAR (1),
c_birth_country VARCHAR (20),
c_login CHAR (13),
c_email_address CHAR (50),
dyear INTEGER ,
year_total DECIMAL (15,2),
sale_type VARCHAR (2)
) DISTRIBUTE BY HASH (customer_id) AS (

SELECT c_customer_id :: VARCHAR AS customer_id ,
c_first_name AS customer_first_name ,
c_last_name AS customer_last_name ,
c_preferred_cust_flag ,
c_birth_country ,
c_login ,
c_email_address ,
sv.d_year AS dyear ,
sv.year_total AS year_total ,
’s’:: VARCHAR AS sale_type

FROM customer ,
(SELECT ss.ss_customer_sk AS customer_sk ,

dt.d_year AS d_year ,
SUM (((ss_ext_list_price - ss_ext_wholesale_cost

- ss_ext_discount_amt) + ss_ext_sales_price) / 2)
AS year_total

FROM store_sales ss, date_dim dt
WHERE ss.ss_sold_date_sk = dt.d_date_sk
GROUP BY ss.ss_customer_sk , dt.d_year) sv

WHERE c_customer_sk = sv.customer_sk
UNION ALL
SELECT c_customer_id :: VARCHAR AS customer_id ,

c_first_name AS customer_first_name ,

c_last_name AS customer_last_name ,
c_preferred_cust_flag ,
c_birth_country ,
c_login ,
c_email_address ,
cv.d_year AS dyear ,
cv.year_total AS year_total ,
’c’:: VARCHAR AS sale_type

FROM customer ,
(SELECT ws.ws_bill_customer_sk AS customer_sk

dt.d_year AS d_year
SUM (((ws_ext_list_price - ws_ext_wholesale_cost

- ws_ext_discount_amt) + ws_ext_sales_price) / 2)
AS year_total

FROM web_sales ws ,
date_dim dt

WHERE ws.ws_sold_date_sk = dt.d_date_sk
GROUP BY ws.ws_bill_customer_sk , dt.d_year) cv

WHERE c_customer_sk = cv.customer_sk);

ANALYZE q04_year_total_8;

SELECT t_s_secyear.customer_id ,
t_s_secyear.customer_first_name ,
t_s_secyear.customer_last_name ,
t_s_secyear.c_preferred_cust_flag ,
t_s_secyear.c_birth_country ,
t_s_secyear.c_login

FROM q04_year_total_8 t_s_firstyear ,
q04_year_total_8 t_s_secyear ,
q04_year_total_8 t_c_firstyear ,
q04_year_total_8 t_c_secyear

WHERE t_s_secyear.customer_id = t_s_firstyear.customer_id
AND t_s_firstyear.customer_id = t_c_secyear.customer_id
AND t_s_firstyear.customer_id = t_c_firstyear.customer_id
AND t_s_firstyear.sale_type = ’s’
AND t_c_firstyear.sale_type = ’c’
AND t_s_secyear.sale_type = ’s’
AND t_c_secyear.sale_type = ’c’
AND t_s_firstyear.dyear = 1999
AND t_s_secyear.dyear = 1999 + 1
AND t_c_firstyear.dyear = 1999
AND t_c_secyear.dyear = 1999 + 1
AND t_s_firstyear.year_total > 0
AND t_c_firstyear.year_total > 0
AND CASE WHEN t_c_firstyear.year_total > 0

THEN t_c_secyear.year_total / t_c_firstyear.year_total
ELSE NULL END >

CASE WHEN t_s_firstyear.year_total > 0
THEN t_s_secyear.year_total / t_s_firstyear.year_total
ELSE NULL END

ORDER BY t_s_secyear.customer_id ,
t_s_secyear.customer_first_name ,
t_s_secyear.customer_last_name ,
t_s_secyear.c_preferred_cust_flag ,
t_s_secyear.c_birth_country ,
t_s_secyear.c_login

LIMIT 100;

DROP TABLE IF EXISTS q04_year_total_8;
END;

Listing 1.6. Query 6

Query 7 (TPC-DS 6) List all the stores with at least 10 customers who during
a given month bought products with the price tag at least 20% higher than the
average price of products in the same category.

BEGIN;
DROP TABLE IF EXISTS q06_specific_month_88;
DROP TABLE IF EXISTS q06_cat_avg_price_88;

CREATE DIMENSION TABLE q06_specific_month_88 AS
SELECT DISTINCT (d_month_seq) AS d_month_seq

FROM date_dim
WHERE d_year = 2002

AND d_moy = 7;

CREATE DIMENSION TABLE q06_cat_avg_price_88 AS
SELECT i_category AS i_category ,

AVG (i_current_price) * 1.2 AS avg_price
FROM item

GROUP BY i_category;

SELECT a.ca_state AS state , count (*) as cnt
FROM customer_address a, customer c,

store_sales s, date_dim d, item i,
q06_specific_month_88 m, q06_cat_avg_price_88 p

WHERE a.ca_address_sk = c.c_current_addr_sk
AND c.c_customer_sk = s.ss_customer_sk
AND s.ss_sold_date_sk = d.d_date_sk
AND s.ss_item_sk = i.i_item_sk
AND d.d_month_seq = m.d_month_seq
AND p.i_category = i.i_category
AND i.i_current_price > p.avg_price

GROUP BY a.ca_state
HAVING COUNT (*) >= 10
ORDER BY cnt
LIMIT 100;

DROP TABLE IF EXISTS q06_specific_month_88;
DROP TABLE IF EXISTS q06_cat_avg_price_88;
END;

Listing 1.7. Query 7

Query 8 For online sales, compare the total sales in which customers checked
online reviews before making the purchase and that of sales in which customers
did not read reviews. Consider only online sales for a specific category in a given
year.

BEGIN;
DROP VIEW clicks;
CREATE VIEW clicks AS (

SELECT c.wcs_item_sk AS item ,
c.wcs_user_sk AS uid ,
c.wcs_click_date_sk AS c_date ,
c.wcs_click_time_sk AS c_time ,
c.wcs_sales_sk AS sales_sk ,
w.wp_type AS wpt

FROM web_clickstreams c, web_page w
WHERE c.wcs_web_page_sk = w.wp_web_page_sk

and c.wcs_user_sk IS NOT NULL
);

DROP VIEW sales_review;
CREATE VIEW sales_review AS (

SELECT s_sk
FROM nPath(ON clicks

PARTITION BY uid
ORDER BY c_date , c_time
MODE (’NONOVERLAPPING ’)
PATTERN (’A+.C*.B’)
SYMBOLS (wpt = ’review ’ AS A, TRUE AS C,

sales_sk IS NOT NULL AS B)
RESULT (FIRST (c_date OF B) AS s_date ,

FIRST (sales_sk OF B) AS s_sk))
WHERE s_date > 2451424 AND s_date <2451424+365

);

SELECT SUM (CASE WHEN ws.ws_sk IN (SELECT * FROM sales_review)
THEN ws_net_paid
ELSE 0 END) AS review_sales_amount ,

SUM (ws_net_paid) -
SUM (CASE WHEN ws.ws_sk IN (SELECT * FROM sales_review)

THEN ws_net_paid
ELSE 0 END) AS no_review_sales_amount

FROM web_sales ws
WHERE ws.ws_sold_date_sk > 2451424

AND ws.ws_sold_date_sk <2451424+365;
END;

Listing 1.8. Query 8

Query 9 (TPC-DS 48) Calculate the total sales by different types of customers
(e.g., based on marital status, education status), sales price and different com-
binations of state and sales profit.

SELECT SUM (ss_quantity)
FROM store_sales , store , customer_demographics ,

customer_address , date_dim
WHERE s_store_sk = ss_store_sk

AND ss_sold_date_sk = d_date_sk
AND d_year = 1998
AND ((cd_demo_sk = ss_cdemo_sk

AND cd_marital_status = ’M’
AND cd_education_status = ’4 yr Degree ’
AND ss_sales_price between 100.00 AND 150.00)

OR
(cd_demo_sk = ss_cdemo_sk

AND cd_marital_status = ’M’
AND cd_education_status = ’4 yr Degree ’
AND ss_sales_price between 50.00 AND 100.00)

OR
(cd_demo_sk = ss_cdemo_sk

AND cd_marital_status = ’M’
AND cd_education_status = ’4 yr Degree ’
AND ss_sales_price between 150.00 AND 200.00))

AND ((ss_addr_sk = ca_address_sk
AND ca_country = ’United States ’
AND ca_state in (’KY’, ’GA’, ’NM’)
AND ss_net_profit between 0 AND 2000)

OR
(ss_addr_sk = ca_address_sk

AND ca_country = ’United States ’
AND ca_state in (’MT’, ’OR’, ’IN’)
AND ss_net_profit between 150 AND 3000)

OR
(ss_addr_sk = ca_address_sk

AND ca_country = ’United States ’
AND ca_state in (’WI’, ’MO’, ’WV’)
AND ss_net_profit between 50 AND 25000));

Listing 1.9. Query 9

Query 10 For all products, extract sentences from its product reviews that con-
tain positive or negative sentiment and display the sentiment polarity of the
extracted sentences.

SELECT pr_item_sk , out_content , out_polarity , out_sentiment_words
FROM ExtractSentiment

(ON product_reviews100
TEXT_COLUMN (’pr_review_content ’)
MODEL (’dictionary ’)
LEVEL (’sentence ’)
ACCUMULATE (’pr_item_sk ’)

)
WHERE out_polarity = ’NEG’

OR out_polarity = ’POS’;

Listing 1.10. Query 10

Query 11 For a given product, measure the correlation of sentiments, including
the number of reviews and average review ratings, on product monthly revenues.

BEGIN;
DROP VIEW IF EXISTS review_stats;
CREATE VIEW review_stats AS(

SELECT p.pr_item_sk AS pid ,
CAST(p.r_count AS INT) AS reviews_count ,
CAST(p.avg_rating AS INT) AS avg_rating ,
CAST(s.revenue AS INT) AS m_revenue

FROM (SELECT pr_item_sk , COUNT (*) AS r_count ,
AVG(pr_review_rating) AS avg_rating

FROM product_reviews
WHERE pr_item_sk IS NOT NULL
GROUP BY 1) p

JOIN
(SELECT ws_item_sk , SUM(ws_net_paid) AS revenue

FROM web_sales
WHERE ws_sold_date_sk > 2452642 -30

AND ws_sold_date_sk < 2452642
AND ws_item_sk IS NOT NULL

GROUP BY 1) s
ON p.pr_item_sk = s.ws_item_sk);

SELECT *
FROM corr_reduce (ON

corr_map (ON
review_stats
COLUMNS (’[m_revenue:reviews_count],[m_revenue:avg_rating]’)
KEY_NAME(’k’)

)
PARTITION BY k);

DROP VIEW review_stats;
END;

Listing 1.11. Query 11

Query 12 Find all customers, who viewed items of a given category on the web
in a given month and year that was followed by an in-store purchase in the three
consecutive months.

SELECT *
FROM nPath (

ON (SELECT c.wcs_item_sk AS item ,
c.wcs_user_sk AS uid ,

c.wcs_click_date_sk AS c_date ,
c.wcs_click_time_sk AS c_time

FROM web_clickstreams c, item i
WHERE c.wcs_item_sk = i.i_item_sk

AND i.i_category in (’Books’, ’Electronics ’)
AND c.wcs_user_sk IS NOT NULL
AND c.wcs_click_date_sk > 2451424
AND c.wcs_click_date_sk < 2451424+30) AS click

PARTITION BY uid
ORDER BY c_date , c_time
ON (SELECT s.ss_item_sk AS item ,

s.ss_customer_sk AS uid ,
s.ss_sold_date_sk AS s_date ,
s.ss_sold_time_sk AS s_time

FROM store_sales s, item i
WHERE s.ss_item_sk = i.i_item_sk

AND i.i_category in (’Books’, ’Electronics ’)
AND s.ss_customer_sk IS NOT NULL
AND s.ss_sold_date_sk > 2451424
AND s.ss_sold_time_sk < 2451424+120) AS sale

PARTITION BY uid order by s_date , s_time
MODE (’NONOVERLAPPING ’)
PATTERN (’(c+).(s)’)
SYMBOLS (click.uid IS NOT NULL AS c,

sale.uid IS NOT NULL AS s)
RESULT (FIRST(c_date OF c) AS c_date ,

FIRST(s_date OF s) AS s_date ,
FIRST(sale.uid OF s) AS user_sk)

);

Listing 1.12. Query 12

Query 13 (TPC-DS 74) Display customers with both store and web sales in
consecutive years for whom the increase in web sales exceeds the increase in
store sales for a specified year.

BEGIN;
DROP TABLE IF EXISTS q74_customer_year_total_880;

CREATE TEMP TABLE q74_customer_year_total_880(
customer_id VARCHAR (16),
customer_first_name CHAR (20)
customer_last_name CHAR (30)
year INTEGER
year_total DECIMAL (15,2)
sale_type VARCHAR (2))
DISTRIBUTE BY hash (customer_id) AS
SELECT c_customer_id customer_id ,

c_first_name customer_first_name ,
c_last_name customer_last_name ,
d_year year ,
SUM(ss_net_paid) year_total ,
’s’:: VARCHAR sale_type

FROM customer , store_sales , date_dim
WHERE c_customer_sk = ss_customer_sk

AND ss_sold_date_sk = d_date_sk
AND d_year IN (1999 ,1999 + 1)

GROUP BY c_customer_id , c_first_name ,
c_last_name , d_year

UNION ALL
SELECT c_customer_id customer_id ,

c_first_name customer_first_name ,
c_last_name customer_last_name ,
d_year year ,
SUM(ws_net_paid) year_total ,
’w’:: VARCHAR sale_type

FROM customer , web_sales , date_dim
WHERE c_customer_sk = ws_bill_customer_sk

AND ws_sold_date_sk = d_date_sk
AND d_year IN (1999 ,1999 + 1)

GROUP BY c_customer_id , c_first_name ,
c_last_name , d_year;

SELECT t_s_secyear.customer_id , t_s_secyear.customer_first_name ,
t_s_secyear.customer_last_name

FROM q74_customer_year_total_880 t_s_firstyear ,
q74_customer_year_total_880 t_s_secyear ,
q74_customer_year_total_880 t_w_firstyear ,
q74_customer_year_total_880 t_w_secyear

WHERE t_s_secyear.customer_id = t_s_firstyear.customer_id
AND t_s_firstyear.customer_id = t_w_secyear.customer_id
AND t_s_firstyear.customer_id = t_w_firstyear.customer_id
AND t_s_firstyear.sale_type = ’s’
AND t_w_firstyear.sale_type = ’w’
AND t_s_secyear.sale_type = ’s’
AND t_w_secyear.sale_type = ’w’
AND t_s_firstyear.year = 1999
AND t_s_secyear.year = 1999 + 1
AND t_w_firstyear.year = 1999
AND t_w_secyear.year = 1999 + 1
AND t_s_firstyear.year_total > 0
AND t_w_firstyear.year_total > 0
AND CASE WHEN t_w_firstyear.year_total > 0

THEN t_w_secyear.year_total / t_w_firstyear.year_total
ELSE NULL END

> CASE WHEN t_s_firstyear.year_total > 0
THEN t_s_secyear.year_total / t_s_firstyear.year_total
ELSE NULL END

ORDER BY 1
LIMIT 100;

DROP TABLE IF EXISTS q74_customer_year_total_880;
END;

Listing 1.13. Query 13

Query 14 (TPC-DS 90) What is the ratio between the number of items sold over
the internet in the morning (8 to 9am) to the number of items sold in the evening
(7 to 8pm) of customers with a specified number of dependents. Consider only
websites with a high amount of content.

SELECT CAST(amc AS DECIMAL (15,4)) / CAST(pmc AS DECIMAL (15,4)) am_pm_ratio
FROM (SELECT COUNT (*) amc

FROM web_sales , household_demographics , time_dim , web_page wp
WHERE ws_sold_time_sk = time_dim.t_time_sk

AND ws_ship_hdemo_sk = household_demographics.hd_demo_sk
AND ws_web_page_sk = wp.wp_web_page_sk
AND time_dim.t_hour BETWEEN 8 AND 8+1
AND household_demographics.hd_dep_count = 5
AND wp.wp_char_count BETWEEN 5000 AND 5200) at,

(SELECT COUNT (*) pmc
FROM web_sales , household_demographics , time_dim , web_page wp

WHERE ws_sold_time_sk = time_dim.t_time_sk
AND ws_ship_hdemo_sk = household_demographics.hd_demo_sk
AND ws_web_page_sk = wp.wp_web_page_sk
AND time_dim.t_hour BETWEEN 19 AND 19+1
AND household_demographics.hd_dep_count = 5
AND wp.wp_char_count BETWEEN 5000 AND 5200) pt

ORDER BY am_pm_ratio ;

Listing 1.14. Query 14

Query 15 Find the categories with flat or declining sales for in store purchases
during a given year for a given store.

BEGIN;
DROP VIEW IF EXISTS category_coefficient;
DROP VIEW IF EXISTS time_series_category;

CREATE VIEW time_series_category AS (
SELECT i.i_category_id AS cat ,

s.ss_sold_date_sk AS d,
SUM(s.ss_net_paid) AS sales

FROM store_sales s, item i
WHERE s.ss_item_sk = i.i_item_sk

AND i.i_category_id IS NOT NULL
AND s.ss_sold_date_sk > 2451424
AND s.ss_sold_date_sk < 2451424+365
AND s.ss_store_sk = 10

GROUP BY 1,2
);

CREATE VIEW category_coefficient AS (
SELECT 1 AS category , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 1)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 2, coefficient_index , value

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 2)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 3, coefficient_index , value

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 3)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 4, coefficient_index , value

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 4)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 5, coefficient_index , value

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 5)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 6, coefficient_index , value

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 6)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 7, coefficient_index , value

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 7)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 8, coefficient_index , value

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 8)
) partition by 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 9, coefficient_index , value

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 9)
) partition by 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 10, coefficient_index , value

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_category

WHERE cat = 10)
) partition by 1

)
WHERE coefficient_index = 1;

SELECT * FROM category_coefficient WHERE slope < 0;

DROP VIEW category_coefficient;
DROP VIEW time_series_category;
END;

Listing 1.15. Query 15

Query 16 (TPC-DS 40) Compute the impact of an item price change on the
store sales by computing the total sales for items in a 30 day period before and
after the price change. Group the items by location of warehouse where they
were delivered from.

SELECT w_state , i_item_id ,
SUM (CASE WHEN (CAST (d_date AS DATE) < CAST (’1998 -03 -16’ AS DATE))

THEN ws_sales_price - coalesce(wr_refunded_cash ,0) ELSE 0
END)

AS sales_before ,
SUM (CASE WHEN (CAST (d_date AS DATE) >= CAST (’1998 -03 -16’ AS DATE))

THEN ws_sales_price - coalesce(wr_refunded_cash ,0) ELSE 0
END)

AS sales_after
FROM web_sales LEFT OUTER JOIN web_returns

ON (ws_order_number = wr_order_number
AND ws_item_sk = wr_item_sk),
warehouse , item , date_dim

WHERE i_item_sk = ws_item_sk
AND ws_warehouse_sk = w_warehouse_sk
AND ws_sold_date_sk = d_date_sk
AND d_date BETWEEN (CAST (’1998 -03 -16’ AS DATE) - INTERVAL ’30 day’)

AND (CAST (’1998 -03 -16’ AS DATE) + INTERVAL ’30 day’)
GROUP BY w_state ,i_item_id
ORDER BY w_state ,i_item_id;

Listing 1.16. Query 16

Query 17 (TPC-DS 61) Find the ratio of items sold with and without promotions
in a given month and year. Only items in certain categories sold to customers
living in a specific time zone are considered.

SELECT promotions , total ,
CAST(promotions AS DECIMAL (15 ,4)) /
CAST(total AS DECIMAL (15 ,4)) * 100

FROM (SELECT SUM (ss_ext_sales_price) promotions
FROM store_sales , store , promotion , date_dim ,

customer , customer_address , item
WHERE ss_sold_date_sk = d_date_sk

AND ss_store_sk = s_store_sk
AND ss_promo_sk = p_promo_sk
AND ss_customer_sk= c_customer_sk
AND ca_address_sk = c_current_addr_sk
AND ss_item_sk = i_item_sk
AND ca_gmt_offset = -7
AND i_category = ’Jewelry ’
AND (p_channel_dmail = ’Y’ OR p_channel_email = ’Y’

OR p_channel_tv = ’Y’)
AND s_gmt_offset = -7
AND d_year = 2001
AND d_moy = 12) promotional_sales ,

(SELECT sum(ss_ext_sales_price) total
FROM store_sales , store , date_dim ,

customer , customer_address , item
WHERE ss_sold_date_sk = d_date_sk

AND ss_store_sk = s_store_sk
AND ss_customer_sk= c_customer_sk
AND ca_address_sk = c_current_addr_sk
AND ss_item_sk = i_item_sk
AND ca_gmt_offset = -7
AND i_category = ’Jewelry ’
AND s_gmt_offset = -7
AND d_year = 2001
AND d_moy = 12) all_sales

ORDER BY promotions , total;

Listing 1.17. Query 17

Query 18 Identify the stores with flat or declining sales in 3 consecutive months,
check if there are any negative reviews regarding these stores available online.

BEGIN;
DROP VIEW IF EXISTS store_coefficient;
DROP VIEW IF EXISTS time_series_store;

CREATE VIEW time_series_store AS (
SELECT ss_store_sk AS store , ss_sold_date_sk AS d,

SUM(ss_net_paid) AS sales
FROM store_sales

WHERE ss_sold_date_sk > 2451424
AND ss_sold_date_sk < 2451424+90

GROUP BY 1,2);

CREATE VIEW store_coefficient AS (
SELECT 1 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 1)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 2 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 2)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 3 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 3)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 4 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 4)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 5 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 5)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 6 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 6)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 7 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 7)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 8 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 8)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 9 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 9)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 10 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 10)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 11 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 11)
) PARTITION BY 1

)
WHERE coefficient_index = 1

UNION ALL
SELECT 12 AS store , coefficient_index , value AS slope

FROM linreg (ON
linregmatrix (ON

(SELECT d, sales
FROM time_series_store

WHERE store = 12)
) PARTITION BY 1

)
WHERE coefficient_index = 1);

SELECT s_store_name , pr_review_date , out_content ,
out_polarity , out_sentiment_words

FROM ExtractSentiment (ON

(SELECT s_store_name , pr_review_content , pr_review_date
FROM store_coefficient c, store s, product_reviews

WHERE c.slope < 0
AND s.s_store_sk = c.store
AND pr_review_content like ’%’|| s_store_name ||’%’)

TEXT_COLUMN(’pr_review_content ’)
MODEL(’dictionary ’)
LEVEL(’DOCUMENT ’)
ACCUMULATE(’s_store_name ’,’pr_review_date ’))

WHERE out_polarity = ’NEG’;

DROP VIEW store_coefficient;
DROP VIEW time_series_store;
END;

Listing 1.18. Query 18

Query 19 Retrieve the items with the highest number of returns where the num-
ber of returns was approximately equivalent across all store and web channels
(within a tolerance of +/- 10%), within the week ending a given date. Analyze
the online reviews for these items to see if there are any major negative reviews.

BEGIN;

CREATE VIEW sr_items AS
(SELECT i_item_sk item_id ,

SUM(sr_return_quantity) sr_item_qty
FROM store_returns , item , date_dim

WHERE sr_item_sk = i_item_sk
AND d_date IN

(SELECT d_date
FROM date_dim

WHERE d_week_seq IN
(SELECT d_week_seq

FROM date_dim
WHERE d_date IN

(’1998 -01 -02’,’1998 -10 -15’,’1998 -11 -10’)))
AND sr_returned_date_sk = d_date_sk

GROUP BY i_item_sk
HAVING SUM (sr_return_quantity) > 0);

CREATE VIEW wr_items AS
(SELECT i_item_sk item_id , SUM(wr_return_quantity) wr_item_qty

FROM web_returns , item , date_dim
WHERE wr_item_sk = i_item_sk

AND d_date IN (SELECT d_date
FROM date_dim
WHERE d_week_seq in

(SELECT d_week_seq
FROM date_dim

WHERE d_date IN (’2001 -03 -10’ ,’2001 -08 -04’ ,’2001 -11 -14’)))
AND wr_returned_date_sk = d_date_sk

GROUP BY i_item_sk
HAVING SUM(wr_return_quantity) > 0);

CREATE VIEW return_items AS
(SELECT sr_items.item_id item , sr_item_qty ,

100.0 * sr_item_qty / (sr_item_qty + wr_item_qty) / 2.0 sr_dev ,
wr_item_qty , 100.0 * wr_item_qty /
(sr_item_qty + wr_item_qty) / 2.0 wr_dev ,
(sr_item_qty +wr_item_qty) / 2.0 "average"

FROM sr_items , wr_items
WHERE sr_items.item_id = wr_items.item_id
ORDER BY average DESC
LIMIT 100) ;

SELECT pr_item_sk , out_content , out_polarity , out_sentiment_words
FROM ExtractSentiment (ON

product_reviews
TEXT_COLUMN (’pr_review_content ’)
MODEL (’dictionary ’)
LEVEL (’sentence ’)
ACCUMULATE (’pr_item_sk ’)

)
WHERE out_polarity = ’NEG’

AND pr_item_sk IN (SELECT item FROM return_items);

DROP VIEW return_items;
DROP VIEW wr_items;
DROP VIEW sr_items;
END;

Listing 1.19. Query 19

Query 20 Customer segmentation for return analysis: Customers are separated
along the following dimensions: return frequency, return order ratio (total num-
ber of orders partially or fully returned versus the total number of orders),
return item ratio (total number of items returned versus the number of items
purchased), return amount ration (total monetary amount of items returned ver-
sus the amount purchased), return order ratio. Consider the store returns during
a given year for the computation.

CREATE VIEW sales_returns AS (
SELECT s.ss_sold_date_sk AS s_date ,

r.sr_returned_date_sk AS r_date ,
s.ss_item_sk AS item ,
s.ss_ticket_number AS oid ,
s.ss_net_paid AS s_amount ,
r.sr_return_amt AS r_amount ,
(CASE WHEN s.ss_customer_sk IS NULL

THEN r.sr_customer_sk ELSE s.ss_customer_sk END) AS cid ,
s.ss_customer_sk AS s_cid ,
sr_customer_sk AS r_cid

FROM store_sales s LEFT JOIN store_returns100 r ON
s.ss_item_sk = r.sr_item_sk

AND s.ss_ticket_number = r.sr_ticket_number
WHERE s.ss_sold_date_sk IS NOT NULL);

CREATE VIEW clusters AS (
SELECT cid ,

100.0 * COUNT (DISTINCT (CASE WHEN r_date IS NOT NULL
THEN oid ELSE NULL END))

/ COUNT (DISTINCT oid) AS r_order_ratio ,
SUM (CASE WHEN r_date IS NOT NULL THEN 1 ELSE 0 END)

/ COUNT (item) * 100 AS r_item_ratio ,
SUM (CASE WHEN r_date IS NOT NULL THEN r_amount ELSE 0 END)

/ SUM (s_amount) * 100 AS r_amount_ratio ,
COUNT (DISTINCT (CASE WHEN r_date IS NOT NULL

THEN r_date ELSE NULL END))
AS r_freq

FROM sales_returns
WHERE cid IS NOT NULL
GROUP BY 1

HAVING COUNT (DISTINCT (CASE WHEN r_date IS NOT NULL
THEN r_date ELSE NULL END)) > 1);

SELECT *
FROM kmeans (ON

(SELECT 1)

PARTITION BY 1
DATABASE (’benchmark ’)
USERID (’benchmark ’)
PASSWORD (’benchmark ’)
INPUTTABLE (’clusters AS c’)
OUTPUTTABLE (’user_return_groups ’)
NUMBERK(’4’));

SELECT clusterid , cid
FROM kmeansplot (ON

clusters AS c
PARTITION BY ANY
ON user_return_groups dimension
CENTROIDSTABLE (’user_return_groups ’))

ORDER BY clusterid , cid;

DROP TABLE user_return_groups;
DROP VIEW clusters;
DROP VIEW sales_returns;

Listing 1.20. Query 20

Query 21 (TPC-DS 29) Get all items that were sold in stores in a given month
and year and which were returned in the next six months and re-purchased by
the returning customer afterwards through the web sales channel in the following
three years. For those these items, compute the total quantity sold through the
store, the quantity returned and the quantity purchased through the web. Group
this information by item and store.

SELECT i_item_id , i_item_desc , s_store_id , s_store_name ,
sum(ss_quantity) AS store_sales_quantity ,
sum(sr_return_quantity) AS store_returns_quantity ,
sum(ws_quantity) AS web_sales_quantity

FROM store_sales , store_returns , web_sales , date_dim d1 ,
date_dim d2, date_dim d3 , store , item

WHERE d1.d_moy = 4
AND d1.d_year = 1998
AND d1.d_date_sk = ss_sold_date_sk
AND i_item_sk = ss_item_sk
AND s_store_sk = ss_store_sk
AND ss_customer_sk = sr_customer_sk
AND ss_item_sk = sr_item_sk
AND ss_ticket_number = sr_ticket_number
AND sr_returned_date_sk = d2.d_date_sk
AND d2.d_moy BETWEEN 4 AND 4 + 3
AND d2.d_year = 1998
AND sr_customer_sk = ws_bill_customer_sk
AND sr_item_sk = ws_item_sk
AND ws_sold_date_sk = d3.d_date_sk
AND d3.d_year IN (1998 ,1998+1 ,1998+2)

GROUP BY i_item_id , i_item_desc , s_store_id , s_store_name
ORDER BY i_item_id , i_item_desc , s_store_id , s_store_name;

Listing 1.21. Query 21

Query 22 (TPC-DS 21) For all items whose price was changed on a given date,
compute the percentage change in inventory between the 30-day period before
the price change and the 30-day period after the change. Group this information
by warehouse.

SELECT *
FROM (SELECT w_warehouse_name , i_item_id ,

SUM (CASE WHEN (CAST (d_date AS DATE) < CAST (’2000 -05 -08’ AS
DATE))

THEN inv_quantity_on_hand
ELSE 0 END) AS inv_before

SUM (CASE WHEN (CAST (d_date AS date) >= CAST (’2000 -05 -08’
AS DATE))

THEN inv_quantity_on_hand
ELSE 0 END) AS inv_after

FROM inventory , warehouse , item , date_dim
WHERE i_current_price BETWEEN 0.99 AND 1.49

AND i_item_sk = inv_item_sk
AND inv_warehouse_sk = w_warehouse_sk
AND inv_date_sk = d_date_sk
AND d_date BETWEEN (CAST (’2000 -05 -08’ AS DATE) - 30)

AND (CAST (’2000 -05 -08’ AS DATE) + 30)
GROUP BY w_warehouse_name , i_item_id) x

WHERE (CASE WHEN inv_before > 0
THEN inv_after / inv_before
ELSE NULL END) BETWEEN 2.0/3.0 AND 3.0/2.0

ORDER BY w_warehouse_name , i_item_id;

Listing 1.22. Query 22

Query 23 (TPC-DS 39) This query contains multiple, related iterations:

1. Calculate the coefficient of variation and mean of every item and warehouse
of two consecutive months.

2. Find items that had a coefficient of variation in the first months of 1.5 or
larger.

BEGIN;

CREATE VIEW inv AS
(SELECT w_warehouse_name , w_warehouse_sk , i_item_sk ,

d_moy , stdev , mean ,
CASE mean WHEN 0 THEN NULL ELSE stdev/mean END cov

FROM (SELECT w_warehouse_name , w_warehouse_sk , i_item_sk ,
d_moy , stddev_samp(inv_quantity_on_hand) stdev ,
avg(inv_quantity_on_hand) mean

FROM inventory , item , warehouse , date_dim
WHERE inv_item_sk = i_item_sk

AND inv_warehouse_sk = w_warehouse_sk
AND inv_date_sk = d_date_sk
AND d_year = 1998

GROUP BY w_warehouse_name , w_warehouse_sk ,
i_item_sk , d_moy) foo

WHERE CASE mean WHEN 0 THEN 0 ELSE stdev/mean END > 1);

SELECT inv1.w_warehouse_sk , inv1.i_item_sk , inv1.d_moy , inv1.mean ,
inv1.cov , inv2.w_warehouse_sk , inv2.i_item_sk , inv2.d_moy ,
inv2.mean , inv2.cov

FROM inv inv1 ,inv inv2
WHERE inv1.i_item_sk = inv2.i_item_sk

AND inv1.w_warehouse_sk = inv2.w_warehouse_sk
AND inv1.d_moy =1
AND inv2.d_moy =1+1

ORDER BY inv1.w_warehouse_sk , inv1.i_item_sk ,
inv1.d_moy , inv1.mean , inv1.cov ,
inv2.d_moy ,inv2.mean , inv2.cov;

DROP VIEW IF EXISTS inv;
CREATE VIEW inv AS

(SELECT w_warehouse_name , w_warehouse_sk , i_item_sk ,
d_moy , stdev , mean ,
CASE mean WHEN 0 THEN NULL ELSE stdev/mean END cov

FROM (SELECT w_warehouse_name , w_warehouse_sk , i_item_sk ,
d_moy , stddev_samp(inv_quantity_on_hand) stdev ,
avg(inv_quantity_on_hand) mean

FROM inventory , item , warehouse , date_dim
WHERE inv_item_sk = i_item_sk

AND inv_warehouse_sk = w_warehouse_sk
AND inv_date_sk = d_date_sk
AND d_year = 1998

GROUP BY w_warehouse_name , w_warehouse_sk ,
i_item_sk ,d_moy) foo

WHERE CASE mean WHEN 0 THEN 0 ELSE stdev/mean END > 1);

SELECT inv1.w_warehouse_sk , inv1.i_item_sk , inv1.d_moy ,
inv1.mean , inv1.cov , inv2.w_warehouse_sk , inv2.i_item_sk ,
inv2.d_moy , inv2.mean , inv2.cov

FROM inv inv1 , inv inv2
WHERE inv1.i_item_sk = inv2.i_item_sk

AND inv1.w_warehouse_sk = inv2.w_warehouse_sk
AND inv1.d_moy= 2
AND inv2.d_moy= 2 + 1
AND inv1.cov > 1.5

ORDER BY inv1.w_warehouse_sk , inv1.i_item_sk , inv1.d_moy ,
inv1.mean ,inv1.cov , inv2.d_moy , inv2.mean , inv2.cov;

DROP VIEW inv;
END;

Listing 1.23. Query 23

Query 24 For a given product, measure the effect of competitors’ prices on
products’ in-store and online sales. (Compute the cross-price elasticity of demand
for a given product).

BEGIN;

CREATE VIEW competitor_price_view AS
(SELECT i_item_sk , (imp_competitor_price - i_current_price)

/ i_current_price AS price_change , imp_start_date ,
imp_end_date - imp_start_date AS no_days

FROM item , item_marketprices
WHERE imp_item_sk = i_item_sk

AND i_item_sk in (7 ,17)
AND imp_competitor_price < i_current_price);

CREATE VIEW self_ws_view AS
(SELECT ws_item_sk ,

SUM (CASE WHEN ws_sold_date_sk >= c.imp_start_date
AND ws_sold_date_sk < c.imp_start_date + c.no_days

THEN ws_quantity ELSE 0 END) AS current_ws ,
SUM (CASE WHEN ws_sold_date_sk >= c.imp_start_date - c.no_days

AND ws_sold_date_sk < c.imp_start_date
THEN ws_quantity ELSE 0 END) AS prev_ws

FROM web_sales , competitor_price_view c
WHERE ws_item_sk = c.i_item_sk
GROUP BY 1);

CREATE VIEW self_ss_view AS
(SELECT ss_item_sk ,

SUM (CASE WHEN ss_sold_date_sk >= c.imp_start_date
AND ss_sold_date_sk < c.imp_start_date + c.no_days

THEN ss_quantity ELSE 0 END) AS current_ss ,
SUM (CASE WHEN ss_sold_date_sk >= c.imp_start_date - c.no_days

AND ss_sold_date_sk < c.imp_start_date

THEN ss_quantity ELSE 0 END) AS prev_ss
FROM store_sales , competitor_price_view c

WHERE c.i_item_sk = ss_item_sk
GROUP BY 1);

SELECT i_item_sk , (current_ss + current_ws -prev_ss -prev_ws)
/ ((prev_ss + prev_ws) * price_change) AS cross_price_elasticity

FROM competitor_price_view , self_ws_view , self_ss_view
WHERE i_item_sk = ws_item_sk

AND i_item_sk = ss_item_sk;

DROP VIEW self_ws_view;
DROP VIEW self_ss_view;
DROP VIEW competitor_price_view;
END;

Listing 1.24. Query 24

Query 25 Customer segmentation analysis: Customers are separated along the
following key shopping dimensions: recency of last visit, frequency of visits and
monetary amount. Use the store and online purchase data during a given year
to compute.

DROP VIEW usersegments;
CREATE VIEW usersegments AS

(SELECT ss_customer_sk AS cid , ss_ticket_number AS oid ,
ss_sold_date_sk AS dateid , sum(ss_net_paid) AS amount

FROM store_sales
WHERE ss_sold_date_sk > 2452277

AND ss_customer_sk IS NOT NULL
GROUP BY 1,2,3

UNION ALL
SELECT ws_bill_customer_sk AS cid , ws_order_number AS oid ,

ws_sold_date_sk AS dateid , SUM(ws_net_paid) AS amount
FROM web_sales

WHERE ws_sold_date_sk > 2452277
AND ws_bill_customer_sk is not null

GROUP BY 1,2,3);

DROP VIEW clusteringtable;
CREATE VIEW clusteringtable AS

(SELECT cid AS id ,
CASE WHEN 2452642 - MAX(dateid) < 60

THEN 1.0 ELSE 0.0 END as recency ,
COUNT(oid) AS frequency ,
SUM(amount) AS totalspend

FROM usersegments
GROUP BY 1);

DROP TABLE user_shopping_groups;
SELECT *

FROM kmeans (ON
(SELECT 1)
PARTITION BY 1
DATABASE(’benchmark ’)
USERID(’benchmark ’)
PASSWORD(’benchmark ’)
INPUTTABLE (’clusteringtable AS c’)
OUTPUTTABLE (’user_shopping_groups ’)
NUMBERK(’8’));

Listing 1.25. Query 25

Query 26 Cluster customers into book buddies/ club groups based on their in
store book purchasing histories.

CREATE VIEW clusteringtable AS
(SELECT ss.ss_customer_sk AS cid ,

COUNT(CASE WHEN i.i_class_id =1 THEN 1 ELSE NULL END) AS id1 ,
COUNT(CASE WHEN i.i_class_id =3 THEN 1 ELSE NULL END) AS id3 ,
COUNT(CASE WHEN i.i_class_id =5 THEN 1 ELSE NULL END) AS id5 ,
COUNT(CASE WHEN i.i_class_id =7 THEN 1 ELSE NULL END) AS id7 ,
COUNT(CASE WHEN i.i_class_id =9 THEN 1 ELSE NULL END) AS id9 ,
COUNT(CASE WHEN i.i_class_id =11 THEN 1 ELSE NULL END) AS id11 ,
COUNT(CASE WHEN i.i_class_id =13 THEN 1 ELSE NULL END) AS id13 ,
COUNT(CASE WHEN i.i_class_id =15 THEN 1 ELSE NULL END) AS id15 ,
COUNT(CASE WHEN i.i_class_id =2 THEN 1 ELSE NULL END) AS id2 ,
COUNT(CASE WHEN i.i_class_id =4 THEN 1 ELSE NULL END) AS id4 ,
COUNT(CASE WHEN i.i_class_id =6 THEN 1 ELSE NULL END) AS id6 ,
COUNT(CASE WHEN i.i_class_id =8 THEN 1 ELSE NULL END) AS id8 ,
COUNT(CASE WHEN i.i_class_id =10 THEN 1 ELSE NULL END) AS id10 ,
COUNT(CASE WHEN i.i_class_id =14 THEN 1 ELSE NULL END) AS id14 ,
COUNT(CASE WHEN i.i_class_id =16 THEN 1 ELSE NULL END) AS id16

FROM store_sales ss, item i
WHERE ss.ss_item_sk = i.i_item_sk

AND i.i_category = ’Books ’
AND ss.ss_customer_sk IS NOT NULL

GROUP BY 1
HAVING COUNT(ss.ss_item_sk) > 5);

SELECT *
FROM kmeans (ON

(SELECT 1)
PARTITION BY 1
DATABASE(’benchmark ’)
USERID(’benchmark ’)
PASSWORD(’benchmark ’)
INPUTTABLE (’clusteringtable AS c’)
OUTPUTTABLE (’book_club_groups ’)
NUMBERK(’2’));

SELECT clusterid , cid
FROM kmeansplot (

ON clusteringtable AS c
PARTITION BY ANY
ON book_club_groups dimension
CENTROIDSTABLE (’book_club_groups ’))

ORDER BY clusterid , cid;

DROP TABLE IF EXISTS book_club_groups;
DROP VIEW IF EXISTS clusteringtable;

Listing 1.26. Query 26

Query 27 Extract competitor product names and model names (if any) from
online product reviews for a given product.

SELECT DISTINCT *
FROM FindNamedEntity (

ON (SELECT pr_review_sk , pr_item_sk , pr_review_content
FROM product_reviews

WHERE pr_item_sk = 10653) AS p
PARTITION BY ANY
ON nameFind_configure AS "ConfigureTable" DIMENSION
TEXT_COLUMN (’pr_review_content ’)
MODEL(’organization ’)
OUTPUT_COLUMNS(’pr_review_sk ’, ’pr_item_sk ’));

Listing 1.27. Query 27

Query 28 Build text classifier for online review sentiment classification (positive,
negative, neutral), using 60% of available reviews for training and the remaining
40% for testing. Display classifier accuracy on testing data.

CREATE FACT TABLE a32_trainingt (
pr_review_sk BIGINT ,
pr_rating CHAR (3),
pr_review_content TEXT ,
pr_item_sk BIGINT

) DISTRIBUTE BY HASH (pr_review_sk) AS
SELECT pr_review_sk ,

(CASE pr_review_rating
WHEN 1 THEN ’NEG’
WHEN 2 THEN ’NEG’
WHEN 3 THEN ’NEU’
WHEN 4 THEN ’POS’
WHEN 5 THEN ’POS’ END) AS pr_rating ,

pr_review_content , pr_item_sk
FROM product_reviews

WHERE MOD (pr_review_sk , 5) IN (1,2,3);

CREATE FACT TABLE a32_testingt (
pr_review_sk BIGINT ,
pr_rating CHAR (3),
pr_review_content text ,
pr_item_sk BIGINT

) DISTRIBUTE BY HASH (pr_review_sk) AS
SELECT pr_review_sk ,

(CASE pr_review_rating
WHEN 1 THEN ’NEG’
WHEN 2 THEN ’NEG’
WHEN 3 THEN ’NEU’
WHEN 4 THEN ’POS’
WHEN 5 THEN ’POS’ END) AS pr_rating ,

pr_review_content , pr_item_sk
FROM product_reviews

WHERE MOD (pr_review_sk , 5) IN (0, 4);

SELECT *
FROM TextClassifierTrainer (

ON (SELECT 1)
PARTITION BY 1
DATABASE(’benchmark ’)
USERID(’benchmark ’)
PASSWORD(’benchmark ’)
INPUTTABLE(’a32_trainingt ’)
TEXTCOLUMN(’pr_review_content ’)
CATEGORYCOLUMN(’pr_rating ’)
MODELFILE(’senti_classifier.mod’)
CLASSIFIERTYPE(’MaxEnt ’)
NLPPARAMETERS(’useStem:true’));

SELECT *
FROM TextClassifier (

ON InputTable(’a32_testingt ’)
TEXTCOLUMN(’pr_review_content ’)
MODEL(’senti_classifier.mod’)
ACCUMULATE(’pr_review_sk ’,’pr_rating ’));

SELECT *
FROM TextClassifierEvaluator (

ON TextClassifier (
ON InputTable(’a32_trainingt ’)
TEXTCOLUMN(’pr_review_content ’)
MODEL(’senti_classifier.mod’)
ACCUMULATE(’pr_review_sk ’,’pr_rating ’))

PARITION BY 1

EXPECTCOLUMN(’pr_rating ’)
PREDICTCOLUMN(’out_category ’));

DROP TABLE a32_trainingt;
DROP TABLE a32_testingt;

Listing 1.28. Query 28

Query 29 Perform category affinity analysis for products purchased online to-
gether.

CREATE VIEW c_affinity_input AS
(SELECT i.i_category_id AS category_cd ,

s.ws_bill_customer_sk AS customer_id
FROM web_sales s INNER JOIN item i

ON s.ws_item_sk = i_item_sk
WHERE i.i_category_id IS NOT NULL);

SELECT *
FROM cfilter (ON

(SELECT 1)
PARTITION BY 1
DATABASE (’benchmark ’)
USERID (’benchmark ’)
PASSWORD (’benchmark ’)
INPUTTABLE (’benchmark.c_affinity_input ’)
OUTPUTTABLE (’c_affinity_out ’)
DROPTABLE (’true’)
INPUTCOLUMNS (’category_cd ’)
JOINCOLUMNS (’customer_id ’));

SELECT * FROM c_affinity_out;

DROP TABLE IF EXISTS c_affinity_out;
DROP VIEW IF EXISTS c_affinity_input;

Listing 1.29. Query 29

Query 30 Perform category affinity analysis for products viewed together.

DROP VIEW IF EXISTS c_affinity_input;
CREATE VIEW c_affinity_input AS

(SELECT i.i_category_id AS category_cd ,
s.wcs_user_sk AS customer_id

FROM web_clickstreams s INNER JOIN item i
ON s.wcs_item_sk = i_item_sk

WHERE s.wcs_item_sk IS NOT NULL
AND i.i_category_id IS NOT NULL
AND s.wcs_user_sk IS NOT NULL);

SELECT *
FROM cfilter (ON

(SELECT 1)
PARTITION BY 1
DATABASE (’benchmark ’)
USERID (’benchmark ’)
PASSWORD (’benchmark ’)
INPUTTABLE (’benchmark.c_affinity_input ’)
OUTPUTTABLE (’c_affinity_out ’)
DROPTABLE (’true’)
INPUTCOLUMNS (’category_cd ’)
JOINCOLUMNS (’customer_id ’));

SELECT *
FROM c_affinity_out;

DROP VIEW IF EXISTS c_affinity_input;
DROP TABLE IF EXISTS c_affinity_out;

Listing 1.30. Query 30

B BigBench Schema

Below is the complete schema definition for BigBench in Teradata Aster DBMS
syntax.

DROP TABLE IF EXISTS customer_simple;
DROP TABLE IF EXISTS customer_addr_simple;
DROP TABLE IF EXISTS inventory_simple;
DROP TABLE IF EXISTS item_simple;
DROP TABLE IF EXISTS store_sales_simple;
DROP TABLE IF EXISTS store_returns_simple;
DROP TABLE IF EXISTS web_sales_simple;
DROP TABLE IF EXISTS web_returns_simple;

DROP TABLE IF EXISTS customer cascade;
DROP TABLE IF EXISTS customer_address cascade;
DROP TABLE IF EXISTS customer_demographics cascade;
DROP TABLE IF EXISTS date_dim cascade;
DROP TABLE IF EXISTS dbgen_version cascade;
DROP TABLE IF EXISTS household_demographics cascade;
DROP TABLE IF EXISTS income_band cascade;
DROP TABLE IF EXISTS item cascade;
DROP TABLE IF EXISTS promotion cascade;
DROP TABLE IF EXISTS reason cascade;
DROP TABLE IF EXISTS ship_mode cascade;
DROP TABLE IF EXISTS store cascade;
DROP TABLE IF EXISTS time_dim cascade;
DROP TABLE IF EXISTS warehouse cascade;
DROP TABLE IF EXISTS web_site cascade;
DROP TABLE IF EXISTS web_page cascade;
DROP TABLE IF EXISTS inventory cascade;
DROP TABLE IF EXISTS store_sales cascade;
DROP TABLE IF EXISTS store_returns cascade;
DROP TABLE IF EXISTS web_sales cascade;
DROP TABLE IF EXISTS web_returns cascade;

CREATE TABLE dbgen_version (
dv_version VARCHAR (16),
dv_create_date date ,
dv_create_time time ,
dv_cmdline_args VARCHAR (200)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE customer_demographics (
cd_demo_sk BIGINT NOT NULL ,
cd_gender CHAR (1),
cd_marital_status CHAR (1),
cd_education_status CHAR (20),
cd_purchase_estimate INTEGER ,
cd_credit_rating CHAR (10),
cd_dep_count INTEGER ,
cd_dep_employed_count INTEGER ,
cd_dep_college_count INTEGER ,
PRIMARY KEY (cd_demo_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE date_dim (

d_date_sk BIGINT NOT NULL ,
d_date_id CHAR (16) NOT NULL ,
d_date DATE ,
d_month_seq INTEGER ,
d_week_seq INTEGER ,
d_quarter_seq INTEGER ,
d_year INTEGER ,
d_dow INTEGER ,
d_moy INTEGER ,
d_dom INTEGER ,
d_qoy INTEGER ,
d_fy_year INTEGER ,
d_fy_quarter_seq INTEGER ,
d_fy_week_seq INTEGER ,
d_day_name CHAR (9),
d_quarter_name CHAR (6),
d_holiday CHAR (1),
d_weekend CHAR (1),
d_following_holiday CHAR (1),
d_first_dom INTEGER ,
d_last_dom INTEGER ,
d_same_day_ly INTEGER ,
d_same_day_lq INTEGER ,
d_current_day CHAR (1),
d_current_week CHAR (1),
d_current_month CHAR (1),
d_current_quarter CHAR (1),
d_current_year CHAR (1),
PRIMARY KEY (d_date_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE warehouse (
w_warehouse_sk BIGINT NOT NULL ,
w_warehouse_id CHAR (16) NOT NULL ,
w_warehouse_name VARCHAR (20),
w_warehouse_sq_ft INTEGER ,
w_street_number CHAR (10),
w_street_name VARCHAR (60),
w_street_type CHAR (15),
w_suite_number CHAR (10),
w_city VARCHAR (60),
w_county VARCHAR (30),
w_state CHAR (2),
w_zip CHAR (10),
w_country VARCHAR (20),
w_gmt_offset DECIMAL (5,2),
PRIMARY KEY (w_warehouse_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE ship_mode (
sm_ship_mode_sk BIGINT NOT NULL ,
sm_ship_mode_id CHAR (16) NOT NULL ,
sm_type CHAR (30),
sm_code CHAR (10),
sm_carrier CHAR (20),
sm_contract CHAR (20),
PRIMARY KEY (sm_ship_mode_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE time_dim (
t_time_sk BIGINT NOT NULL ,
t_time_id CHAR (16) NOT NULL ,
t_time INTEGER ,
t_hour INTEGER ,
t_minute INTEGER ,
t_second INTEGER ,
t_am_pm CHAR (2),
t_shift CHAR (20),

t_sub_shift CHAR (20),
t_meal_time CHAR (20),
PRIMARY KEY (t_time_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE reason (
r_reason_sk BIGINT NOT NULL ,
r_reason_id CHAR (16) NOT NULL ,
r_reason_desc CHAR (100),
PRIMARY KEY (r_reason_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE income_band (
ib_income_band_sk BIGINT NOT NULL ,
ib_lower_bound INTEGER ,
ib_upper_bound INTEGER ,
PRIMARY KEY (ib_income_band_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE store (
s_store_sk BIGINT NOT NULL ,
s_store_id CHAR (16) NOT NULL ,
s_rec_start_date DATE ,
s_rec_end_date DATE ,
s_closed_date_sk BIGINT ,
s_store_name VARCHAR (50),
s_number_employees INTEGER ,
s_floor_space INTEGER ,
s_hours CHAR (20),
s_manager VARCHAR (40),
s_market_id INTEGER ,
s_geography_class VARCHAR (100),
s_market_desc VARCHAR (100) ,
s_market_manager VARCHAR (40),
s_division_id INTEGER ,
s_division_name VARCHAR (50),
s_company_id INTEGER ,
s_company_name VARCHAR (50),
s_street_number VARCHAR (10),
s_street_name VARCHAR (60),
s_street_type CHAR (15)
s_suite_number CHAR (10),
s_city VARCHAR (60),
s_county VARCHAR (30),
s_state CHAR (2),
s_zip CHAR (10),
s_country VARCHAR (20),
s_gmt_offset DECIMAL (5,2),
s_tax_precentage DECIMAL (5,2),
PRIMARY KEY (s_store_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE web_site (
web_site_sk BIGINT NOT NULL ,
web_site_id CHAR (16) NOT NULL ,
web_rec_start_date DATE ,
web_rec_end_date DATE ,
web_name VARCHAR (50),
web_open_date_sk BIGINT ,
web_close_date_sk BIGINT ,
web_class VARCHAR (50),
web_manager VARCHAR (40),
web_mkt_id INTEGER ,
web_mkt_class VARCHAR (50),
web_mkt_desc VARCHAR (100),
web_market_manager VARCHAR (40),
web_company_id INTEGER ,
web_company_name CHAR (50),

web_street_number CHAR (10),
web_street_name VARCHAR (60),
web_street_type CHAR (15),
web_suite_number CHAR (10),
web_city VARCHAR (60),
web_county VARCHAR (30),
web_state CHAR (2),
web_zip CHAR (10),
web_country VARCHAR (20),
web_gmt_offset DECIMAL (5,2),
web_tax_percentage DECIMAL (5,2),
PRIMARY KEY (web_site_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE household_demographics (
hd_demo_sk BIGINT NOT NULL ,
hd_income_band_sk BIGINT ,
hd_buy_potential CHAR (15),
hd_dep_count INTEGER ,
hd_vehicle_count INTEGER ,
PRIMARY KEY (hd_demo_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE web_page (
wp_web_page_sk BIGINT NOT NULL ,
wp_web_page_id CHAR (16) NOT NULL ,
wp_rec_start_date DATE ,
wp_rec_end_date DATE ,
wp_creation_date_sk BIGINT ,
wp_access_date_sk BIGINT ,
wp_autogen_flag CHAR (1),
wp_customer_sk BIGINT ,
wp_url VARCHAR (100),
wp_type CHAR (50),
wp_char_count INTEGER ,
wp_link_count INTEGER ,
wp_image_count INTEGER ,
wp_max_ad_count INTEGER ,
PRIMARY KEY (wp_web_page_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE promotion (
p_promo_sk BIGINT NOT NULL ,
p_promo_id CHAR (16) NOT NULL ,
p_start_date_sk BIGINT ,
p_end_date_sk BIGINT ,
p_item_sk BIGINT ,
p_cost DECIMAL (15,2),
p_response_target INTEGER ,
p_promo_name CHAR (50),
p_channel_dmail CHAR (1),
p_channel_email CHAR (1),
p_channel_catalog CHAR (1),
p_channel_tv CHAR (1),
p_channel_radio CHAR (1),
p_channel_press CHAR (1),
p_channel_event CHAR (1),
p_channel_demo CHAR (1),
p_channel_details VARCHAR (100) ,
p_purpose CHAR (15),
p_discount_active CHAR (1),
PRIMARY KEY (p_promo_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE customer (
c_customer_sk BIGINT NOT NULL ,
c_customer_id CHAR (16) NOT NULL ,
c_current_cdemo_sk BIGINT ,

c_current_hdemo_sk BIGINT ,
c_current_addr_sk BIGINT ,
c_first_shipto_date_sk BIGINT ,
c_first_sales_date_sk BIGINT ,
c_salutation CHAR (10),
c_first_name CHAR (20),
c_last_name CHAR (30),
c_preferred_cust_flag CHAR (1),
c_birth_day INTEGER ,
c_birth_month INTEGER ,
c_birth_year INTEGER ,
c_birth_country VARCHAR (20),
c_login CHAR (13),
c_email_address CHAR (50),
c_last_review_date CHAR (10),
PRIMARY KEY (c_customer_sk)
) DISTRIBUTE BY HASH (c_customer_sk);

CREATE TABLE customer_address (
ca_address_sk BIGINT NOT NULL ,
ca_address_id CHAR (16) NOT NULL ,
ca_street_number CHAR (10),
ca_street_name VARCHAR (60),
ca_street_type CHAR (15),
ca_suite_number CHAR (10),
ca_city VARCHAR (60),
ca_county VARCHAR (30),
ca_state CHAR (2),
ca_zip CHAR (10),
ca_country VARCHAR (20),
ca_gmt_offset DECIMAL (5,2),
ca_location_type CHAR (20),
PRIMARY KEY (ca_address_sk)
) DISTRIBUTE BY HASH (ca_address_sk);

CREATE TABLE inventory (
inv_date_sk BIGINT NOT NULL ,
inv_item_sk BIGINT NOT NULL ,
inv_warehouse_sk BIGINT NOT NULL ,
inv_quantity_on_hand INTEGER
) DISTRIBUTE BY HASH (inv_item_sk);

CREATE TABLE item (
i_item_sk BIGINT NOT NULL ,
i_item_id CHAR (16) NOT NULL ,
i_rec_start_date DATE ,
i_rec_end_date DATE ,
i_item_desc VARCHAR (200),
i_current_price DECIMAL (7,2),
i_wholesale_cost DECIMAL (7,2),
i_brand_id INTEGER ,
i_brand CHAR (50),
i_class_id INTEGER ,
i_class CHAR (50),
i_category_id INTEGER ,
i_category CHAR (50),
i_manufact_id INTEGER ,
i_manufact CHAR (50),
i_size CHAR (20),
i_formulation CHAR (20),
i_color CHAR (20),
i_units CHAR (10),
i_container CHAR (10),
i_manager_id INTEGER ,
i_product_name CHAR (50),
PRIMARY KEY (i_item_sk)
) DISTRIBUTE BY HASH (i_item_sk);

CREATE TABLE store_sales (
ss_sold_date_sk BIGINT default 9999999 ,
ss_sold_time_sk BIGINT ,
ss_item_sk BIGINT NOT NULL ,
ss_customer_sk BIGINT ,
ss_cdemo_sk BIGINT ,
ss_hdemo_sk BIGINT ,
ss_addr_sk BIGINT ,
ss_store_sk BIGINT ,
ss_promo_sk BIGINT ,
ss_ticket_number BIGINT NOT NULL ,
ss_quantity INTEGER ,
ss_wholesale_cost DECIMAL (7,2),
ss_list_price DECIMAL (7,2),
ss_sales_price DECIMAL (7,2),
ss_ext_discount_amt DECIMAL (7,2),
ss_ext_sales_price DECIMAL (7,2),
ss_ext_wholesale_cost DECIMAL (7,2),
ss_ext_list_price DECIMAL (7,2),
ss_ext_tax DECIMAL (7,2),
ss_coupon_amt DECIMAL (7,2),
ss_net_paid DECIMAL (7,2),
ss_net_paid_inc_tax DECIMAL (7,2),
ss_net_profit DECIMAL (7,2),
) DISTRIBUTE BY HASH (ss_item_sk);

CREATE TABLE store_returns (
sr_returned_date_sk BIGINT default 9999999 ,
sr_return_time_sk BIGINT ,
sr_item_sk BIGINT NOT NULL ,
sr_customer_sk BIGINT ,
sr_cdemo_sk BIGINT ,
sr_hdemo_sk BIGINT ,
sr_addr_sk BIGINT ,
sr_store_sk BIGINT ,
sr_reason_sk BIGINT ,
sr_ticket_number BIGINT NOT NULL ,
sr_return_quantity INTEGER ,
sr_return_amt DECIMAL (7,2),
sr_return_tax DECIMAL (7,2),
sr_return_amt_inc_tax DECIMAL (7,2),
sr_fee DECIMAL (7,2),
sr_return_ship_cost DECIMAL (7,2),
sr_refunded_cash DECIMAL (7,2),
sr_reversed_charge DECIMAL (7,2),
sr_store_credit DECIMAL (7,2),
sr_net_loss DECIMAL (7,2),
) DISTRIBUTE BY HASH (sr_item_sk);

CREATE TABLE web_sales (
ws_sk BIGINT NOT NULL ,
ws_sold_date_sk BIGINT default 9999999 ,
ws_sold_time_sk BIGINT ,
ws_ship_date_sk BIGINT ,
ws_item_sk BIGINT NOT NULL ,
ws_bill_customer_sk BIGINT ,
ws_bill_cdemo_sk BIGINT ,
ws_bill_hdemo_sk BIGINT ,
ws_bill_addr_sk BIGINT ,
ws_ship_customer_sk BIGINT ,
ws_ship_cdemo_sk BIGINT ,
ws_ship_hdemo_sk BIGINT ,
ws_ship_addr_sk BIGINT ,
ws_web_page_sk BIGINT ,
ws_web_site_sk BIGINT ,
ws_ship_mode_sk BIGINT ,
ws_warehouse_sk BIGINT ,
ws_promo_sk BIGINT ,

ws_order_number BIGINT NOT NULL ,
ws_quantity INTEGER ,
ws_wholesale_cost DECIMAL (7,2),
ws_list_price DECIMAL (7,2),
ws_sales_price DECIMAL (7,2),
ws_ext_discount_amt DECIMAL (7,2),
ws_ext_sales_price DECIMAL (7,2),
ws_ext_wholesale_cost DECIMAL (7,2),
ws_ext_list_price DECIMAL (7,2),
ws_ext_tax DECIMAL (7,2),
ws_coupon_amt DECIMAL (7,2),
ws_ext_ship_cost DECIMAL (7,2),
ws_net_paid DECIMAL (7,2),
ws_net_paid_inc_tax DECIMAL (7,2),
ws_net_paid_inc_ship DECIMAL (7,2),
ws_net_paid_inc_ship_tax DECIMAL (7,2),
ws_net_profit DECIMAL (7,2),
) DISTRIBUTE BY HASH (ws_sk);

CREATE TABLE web_returns (
wr_returned_date_sk BIGINT default 9999999 ,
wr_returned_time_sk BIGINT ,
wr_item_sk BIGINT NOT NULL ,
wr_refunded_customer_sk BIGINT ,
wr_refunded_cdemo_sk BIGINT ,
wr_refunded_hdemo_sk BIGINT ,
wr_refunded_addr_sk BIGINT ,
wr_returning_customer_sk BIGINT ,
wr_returning_cdemo_sk BIGINT ,
wr_returning_hdemo_sk BIGINT ,
wr_returning_addr_sk BIGINT ,
wr_web_page_sk BIGINT ,
wr_reason_sk BIGINT ,
wr_order_number BIGINT NOT NULL ,
wr_return_quantity INTEGER ,
wr_return_amt DECIMAL (7,2),
wr_return_tax DECIMAL (7,2),
wr_return_amt_inc_tax DECIMAL (7,2),
wr_fee DECIMAL (7,2),
wr_return_ship_cost DECIMAL (7,2),
wr_refunded_cash DECIMAL (7,2),
wr_reversed_charge DECIMAL (7,2),
wr_account_credit DECIMAL (7,2),
wr_net_loss DECIMAL (7,2),
) DISTRIBUTE BY HASH (wr_item_sk);

DROP TABLE IF EXISTS item_marketprices cascade;
DROP TABLE IF EXISTS web_clickstreams cascade;
DROP TABLE IF EXISTS product_reviews cascade;

CREATE TABLE item_marketprices (
imp_sk BIGINT NOT NULL ,
imp_item_sk BIGINT NOT NULL ,
imp_competitor VARCHAR (20),
imp_competitor_price DECIMAL (7,2),
imp_start_date BIGINT ,
imp_end_date BIGINT ,
PRIMARY KEY (imp_sk)
) DISTRIBUTE BY HASH (imp_sk);

CREATE TABLE web_clickstreams (
wcs_click_sk BIGINT NOT NULL ,
wcs_click_date_sk BIGINT ,
wcs_click_time_sk BIGINT ,
wcs_sales_sk BIGINT ,
wcs_item_sk BIGINT ,
wcs_web_page_sk BIGINT ,
wcs_user_sk BIGINT ,

PRIMARY KEY (wcs_click_sk)
) DISTRIBUTE BY HASH (wcs_click_sk);

CREATE TABLE product_reviews (
pr_review_sk BIGINT NOT NULL ,
pr_review_date DATE ,
pr_review_time CHAR (6),
pr_review_rating INT NOT NULL ,
pr_item_sk BIGINT NOT NULL ,
pr_user_sk BIGINT ,
pr_order_sk BIGINT ,
pr_review_content TEXT NOT NULL ,
PRIMARY KEY (pr_review_sk)
) DISTRIBUTE BY HASH (pr_review_sk);

