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Abstract. BigBench is the first proposal for an end to end big data
analytics benchmark. It features a rich query set with complex, realistic
queries. BigBench was developed based on the decision support bench-
mark TPC-DS. The first proof-of-concept implementation was built for
the Teradata Aster parallel database system and the queries were for-
mulated in the proprietary SQL-MR query language. To test other other
systems, the queries have to be translated.
In this paper, an alternative implementation of BigBench for the Hadoop
ecosystem is presented. All 30 queries of BigBench were realized using
Apache Hive, Apache Hadoop, Apache Mahout, and NLTK. We will
present the different design choices we took and show a proof of concept
evaluation.

1 Introduction

Big data analytics is an ever growing field of research and business. Due to
the drastic decrease of cost of storage and computation more and more data
sources become profitable for data mining. A perfect example is online stores,
while earlier online shopping systems would only record successful transactions,
modern systems record every single interaction of a user with the website. The
former allowed for simple basket analysis techniques, while current level of detail
in monitoring makes detailed user modeling possible.

The growing demands on data management systems and the new forms of
analysis have led to the development of a new breed of systems, big data man-
agement systems (BDMS) [1]. Similar to the advent of database management
systems, there is a vastly growing ecosystem of diverse approaches. This leads to
a dilemma for customers of BDMSs, since there are no realistic and proven mea-
sures to compare different offerings. To this end, we have developed BigBench,
the first proposal for an end to end big data analytics benchmark [2]. BigBench
was designed to cover essential functional and business aspects of big data use
cases.



In this paper, we present an alternative implementation of the BigBench
workload for the Hadoop eco-system. We re-implemented all 30 queries and ran
proof of concept experiments on a 1 GB BigBench installation.

The rest of the paper is organized as follows. In Section 2, we present an
overview of the BigBench benchmark. Section 3 introduces the parts of the
Hadoop ecosystem that were used in our implementation. We give details on the
transformation and implementation of the workload in Section 4. We present a
proof of concept evaluation of our implementation in Section 5. Section 6 gives
an overview of related work. We conclude with future work in Section 7.

2 BigBench Overview
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Fig. 1. BigBench Schema

BigBench is an end-to-end big data analytics benchmark, it was built to
resemble modern analytic use cases in retail business. As basis for the benchmark,
the Transaction Processing Performance Council’s (TPC) new decision support
benchmark TPC-DS was chosen [3]. This choice highly sped up the development
of BigBench and made it possible to start from a solid and proven foundation.
A high-level overview of the data model can be seen in Figure 1. The TPC-
DS data model is a snowflake schema with 6 fact tables, representing 3 sales
channels, store sales, catalog sales, and online sales, each with a sales and a
returns fact table. For BigBench the catalog sales were removed, since they have
decreasing significance in retail business. As can be seen in Figure 1, additional
big data specific dimensions were added. Marketprice is a traditional relational
table storing competitors prices. The Web Log portion represents a click-stream
that is used to analyze the user behavior. This part of the data set is semi-
structured, since different entries in the weblog represent different user actions



and thus have different format. The log is generated in form of an Apache Web
server log. The unstructured part of the schema is generated in form of product
reviews. These are, for example, used for sentiment analysis. The full schema is
described in [4].

BigBench features 30 complex queries, 10 of which are taken from TPC-DS,
the others were specifically developed for BigBench. The queries are covering
major areas of big data analytics as specified in [5]. As a result, the queries
cannot be expressed by pure SQL queries since they include machine learn-
ing techniques, sentiment analysis, and procedural computations. In Teradata
Aster, this is solved using built in functions that are internally processed in a
MapReduce fashion. The benchmark, however, does not dictate a specific imple-
mentation, therefore, the benchmark can be implemented in various ways. The
full list of queries can be found in [4].

3 Technologies for BigBench on Hadoop
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Fig. 2. Hadoop Stack

In this section, the technologies used to create an open-source implementation
of BigBench are described. BigBench is mainly implemented using four open-
source software frameworks: Apache Hadoop, Apache Hive, Apache Mahout,
and the Natural Language Processing Toolkit (NLTK). We used the following
versions for our implementation: Apache Hadoop V0.20.2, Apache Hive 0.8.1,
Apache Mahout 0.6, and NLTK 3.0.

3.1 Hadoop

Apache Hadoop provides a scalable distributed file system and features to per-
form analysis on and store large data sets using the MapReduce framework [6].
Its architecture consists of many components and a discussion of the design de-
cisions with implementation details can be found [7]. Only components that are
most relevant to the BigBench implementation will be described in the following.



The Hadoop Distributed File System (HDFS) is modeled after the Unix file
system hierarchy with 3-way replication of data for security and analysis perfor-
mance purposes. The Hadoop command line interface provides access to a most
standard Unix file operations such as ls, rm, cp, etc. A complete reference can
be found on Apache Hadoop’s website3.

A cluster implementing HDFS has 3 main components: HDFS client, na-
menode, and datanode. The namenode primarily stores meta data. It keeps a
record of the namespace tree, which stores information relevant to file block
allocation to datanode. It should be noted that all of the namespace data is
stored in RAM. There can only be one namenode in any single cluster in the
version of Hadoop used. However, on the other hand, there are usually multiple
datanode in a cluster. Each datanode contains two files in the local file system:
one to store metadata and the other to store the actual data. The HDFS client
provides an interface for user-created applications to access and modify HDFS.
Access is provided in a two-tiered process: first, the metadata in the namenode
is extracted and then information is used to access the relevant datanodes.

3.2 Hive

Apache Hive is a data warehousing solution being developed with a view to pro-
vide traditional SQL programmers access to the functionality of MapReduce [8].
To this end, Hive features an SQL-like structured language called Hive Query
Language (HiveQL)4. The version used in the BigBench implementation sup-
ports a proper subset of standard SQL operations in addition to providing the
facility to ”stream” custom user-defined MapReduce jobs to perform operations
on stored tables.

We will only outline the basic architecture here, a more detailed description
can be found in [8]. Some components of the Hive architecture that are worth
of noticing are the metastore, the query compiler, and the execution engine. The
metastore is used to store all operation-critical information pertaining to table
schema, table location, table columns and their data types. The information
stored in the metastore needs to be extracted very quickly for data analysis and
transformation and, therefore, it is usually stored in a local database. The most
commonly used metastore system is MySQL. The query compiler compiles the
queries written in Hive-QL and optimizes the queries where possible. Finally,
the execution engine that is based on MapReduce executes the tasks specified
by the compiled queries according to their precedence in the dependency tree.

3.3 Mahout and NLTK

Apache Mahout is an open-source community effort to build a scalable machine
learning algorithm library on top of Apache Hadoop5. It has an ever-increasing

3 http://hadoop.apache.org/
4 http://hive.apache.org/
5 https://mahout.apache.org/



number of machine learning classification and clustering algorithms among many
others. Mahout is designed to run such algorithms on distributed file systems.
In the BigBench implementation, Mahout is used mainly to run the k-means
algorithm on HDFS.

NLTK provides a library of Python functions for the processing of natural
language using standard statistical techniques [9]. It is distributed under the
Apache License6. NLTK is used to implement sentiment analysis in BigBench
queries.

4 Query Implementation

In this section, the implementation of the different flavors of queries will be
discussed. The overall number of 30 queries has been grouped into 4 categories:
Pure Hive queries, Hive queries with MapReduce programs, Hive queries using
natural language processing, and queries using Apache Mahout. In the following,
we will give an example for each of the different flavors of queries.

The distribution of the different query types is shown in Table 1. Table 2
shows the data types that the queries access as specified in Section 2.

Data Type BigBench Queries Percentage

Pure Hive
5, 6, 7, 9, 11, 12, 13, 14,
16, 17, 21, 22, 23, 24

46.7

Hive + MR 1, 2, 3, 4, 8 16.7

Hive + Hadoop Streaming 15, 18 6.7

Mahout 20, 25, 26, 29, 30 16.7

NLTK 10, 19, 27, 28 13.2

Table 1. Distribution of BigBench Queries by Query Type

Data Type BigBench Queries Percentage

Structured
1, 6, 7, 9, 13, 14, 15, 16, 17, 19,
20, 21, 22, 23, 24, 25, 26, 29

60.0

Semi-Structured 2, 3, 4, 5, 8, 12, 30 23.3

Unstructured 10, 11, 18, 27, 28 16.7

Table 2. Distribution of BigBench Queries by Data Type

It should be noted that queries that use NLTK and Mahout also require
preprocessing by Hive. Therefore, Apache Hive is critical to all data processing
activities in this implementation of BigBench.

6 http://www.nltk.org/



4.1 Loading Data

The synthetically generated data is loaded onto Hive in 2 steps:

1. Each table required by the benchmark is created in Hive using the syntax
shown in Listing 1.1. The full list of table descriptions is presented in [4].

2. The data is loaded onto the Hive tables using the directive in Listing 1.2.

drop table if exists customer_demographics;

create table customer_demographics
( cd_demo_sk bigint ,

cd_gender string ,
cd_marital_status string ,
cd_education_status string ,
cd_purchase_estimate int ,
cd_credit_rating string ,
cd_dep_count int ,
cd_dep_employed_count int ,
cd_dep_college_count int

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’|’;

Listing 1.1. Creating the customer demographics table in Hive

LOAD DATA LOCAL INPATH ’customer_demographics.dat’
OVERWRITE INTO TABLE customer_demographics;

Listing 1.2. Loading customer demographics data onto Hive

Data is loaded in the same way for all of the 24 tables of the benchmark.

4.2 Hive Queries

Hive does not support the full standard SQL syntax; some of these peculiarities
will be discussed in more detail in this section as relevant to BigBench Query
21.

Query 21 (TPC-DS 29) :

Get all items that were sold in stores in a given month and year and which
were returned in the next six months and re-purchased by the returning
customer afterwards through the web sales channel in the following three
years. For those these items, compute the total quantity sold through the
store, the quantity returned and the quantity purchased through the web.
Group this information by item and store.



SELECT i_item_id , i_item_desc , s_store_id , s_store_name ,
sum(ss_quantity) AS store_sales_quantity ,
sum(sr_return_quantity) AS store_returns_quantity ,
sum(ws_quantity) AS web_sales_quantity

FROM store_sales , store_returns , web_sales , date_dim d1 ,
date_dim d2, date_dim d3 , store , item

WHERE d1.d_moy = 4
AND d1.d_year = 1998
AND d1.d_date_sk = ss_sold_date_sk
AND i_item_sk = ss_item_sk
AND s_store_sk = ss_store_sk
AND ss_customer_sk = sr_customer_sk
AND ss_item_sk = sr_item_sk
AND ss_ticket_number = sr_ticket_number
AND sr_returned_date_sk = d2.d_date_sk
AND d2.d_moy BETWEEN 4 AND 4 + 3
AND d2.d_year = 1998
AND sr_customer_sk = ws_bill_customer_sk
AND sr_item_sk = ws_item_sk
AND ws_sold_date_sk = d3.d_date_sk
AND d3.d_year IN (1998 ,1998+1 ,1998+2)

GROUP BY i_item_id , i_item_desc , s_store_id , s_store_name
ORDER BY i_item_id , i_item_desc , s_store_id , s_store_name;

Listing 1.3. Query 21 - Aster SQL-MR Syntax

SELECT * FROM
SELECT i.i_item_id AS item_id , i.i_item_desc AS item_desc ,

s.s_store_id AS store_id , s.s_store_name AS store_name ,
SUM(ss.ss_quantity) AS store_sales_quantity ,
SUM(sr.sr_return_quantity) AS store_returns_quantity ,
SUM(ws.ws_quantity) AS web_sales_quantity

FROM store_sales ss
JOIN item i ON (i.i_item_sk = ss.ss_item_sk)
JOIN store s ON (s.s_store_sk = ss.ss_store_sk)
JOIN date_dim d1 ON (d1.d_date_sk = ss.ss_sold_date_sk

AND d1.d_moy = 4 AND d1.d_year = 1998)
JOIN store_returns s ON (ss.ss_customer_sk = sr.sr_customer_sk

AND ss.ss_item_sk = s.sr_item_sk)
JOIN date_dim d2 ON (sr.sr_returned_date_sk = d2.d_date_sk

AND d2.d_moy > 4-1 AND d2.d_moy < 4+3+1 AND d2.d_year = 1998)
JOIN web_sales ws ON (sr.sr_item_sk = ws.ws_item_sk)
JOIN date_dim d3 ON (ws.ws_sold_date_sk = d3.d_date_sk

AND d3.d_year IN (1998 ,1998+1 ,1998+2))
GROUP BY i.i_item_id , i.i_item_desc , s.s_store_id , s.s_store_name)
ORDER BY item_id , item_desc , store_id , store_name;

Listing 1.4. Query 21 - Hive Syntax

Query 21 is taken from TPC-DS and thus a traditional relational query. The
version in SQL-MR syntax is shown in Listing 1.3. It joins 8 tables, 3 fact tables
and 5 dimensions. The largest table, store sales is joined with item, store, and
date dim to find items bought in a particular month. Then, by joining with
store returns, the items that were returned are filtered. Finally, using a join
with web sales items that were previously returned in store and then bought
again online within 3 years are selected. These are grouped by by item and
store. The Hive version, as shown in Listing 1.4, is an almost word-for-word
translation of the SQL-MR version with a few notable differences in syntax.
The Hive implementation makes use of the JOIN syntax extensively; this is due
to the fact that the current Hive version only supports a single table in the
FROM-clause, which may be a composite of multiple tables itself, as in this case.
Also, arguments of the WHERE-clause in the SQL-MR query have been used as



JOIN conditions in the Hive version on grounds of improving efficiency: the Hive
version’s implementation eliminates the need to loop over the resulting table
again after the joins have taken place.

4.3 Hive and MapReduce

Data processing tasks becomes simpler and more intuitive using custom pro-
grams in several BigBench queries. External programs are therefore used in the
queries by means of Hive’s program streaming feature to mimic some of SQL-
MR’s built-in functions. This is discussed with on the example of Query 10 of
BigBench. Query 10 is an example of sentiment analysis, which is not included
in the standard SQL functionality.

Query 10 :

For all products, extract sentences from its product reviews that contain
positive or negative sentiment and display the sentiment polarity of the
extracted sentences.

SELECT pr_item_sk , out_content , out_polarity , out_sentiment_words
FROM ExtractSentiment

(ON product_reviews100
TEXT_COLUMN (’pr_review_content ’)
MODEL (’dictionary ’)
LEVEL (’sentence ’)
ACCUMULATE (’pr_item_sk ’)

)
WHERE out_polarity = ’NEG’

OR out_polarity = ’POS’;

Listing 1.5. Query 10 - SQL-MR Syntax

ADD FILE mapper_10.py;
ADD FILE reducer_10.py;

FROM (
FROM product_reviews

MAP product_reviews.pr_item ,
product_reviews.pr_review_content

USING ’python mapper_10.py’
AS item , polarity

) mapper

REDUCE mapper.item , mapper.polarity
USING ’python reducer_10.py’
AS (item STRING , polarity STRING);

Listing 1.6. Query 10 - Hive Syntax

In the mapper and reducer files are imported using the ADD FILE filename

directive. The mapper is invoked using the USING LANGUAGE MAPPER_FILE direc-
tive; the reducer is used similarly. The mapper should generate a (KEY, VALUE)

vector as per map-reduce guidelines: this vector is generated using the MAP KEY,

VALUE directive. Later, the REDUCE KEY, VALUE directive is used to reduce the
mapped vector.



4.4 Hive and Natural Language Processing

All of the natural language processing capabilities of the Hive implementation
of BigBench are implemented using the Natural Language Toolkit (NLTK) 3.0
package. In this section, the NLP-processing capability of Query 10 is analyzed
in more detail.

All of the features of the NLTK package are available in the program after
it is imported using the standard Python import syntax.

import nltk
[..]
def get_word_features(wordlist):

wordlist = nltk.FreqDist(wordlist)
word_features = wordlist.keys()
return word_features

def extract_sentiment(tweet):
[..]
for (words , sentiment) in pos_tweets + neg_tweets:

words_filtered = [e.lower () for e in words.split() if len(e) >= 3]
tweets.append (( words_filtered , sentiment))

training_set = nltk.classify.apply_features(extract_features , tweets)
classifier = nltk.NaiveBayesClassifier.train(training_set)
return classifier.classify(extract_features(tweet.split()))

[..]

Listing 1.7. Query 10 - Sentiment Analysis.py Program

The package provides powerful APIs for natural language processing. An
excellent example of such an API is nltk.FreqDist(DOCUMENT), as used in
the sentiment analysis in Listing 1.7. The FreqDist method gets a Python
set as parameter and returns the modified set containing the frequency dis-
tribution of each word in the original input set. The training and application
of the NLTK classifier on a body of text is done in several steps. First, the
nltk.classify.apply_features() method is used to apply a ”negative” or
”positive” label to each feature of the training data (the extract_features

method extracts the features from the list of tweets). Then, the classifier is
trained using Naive Bayes by invoking the method nltk.NaiveBayesClassifier

train(.training_set). Finally, the trained classifier is used to label the fea-
tures of any new body of text by invoking classifier.classify(extract_

features(tweet.split())).
The overall quality of the results depends on the size and quality of the

training data. In the current version of the implementation, the model is trained
on a very small hand-made data set; a future improvement to the model will
train it on larger training sets to improve its repertoire of feature labels.

Programs to analyze natural language have thereby been used (using stream-
ing in Hive) to add features such as sentiment analysis to some Hive queries in
this implementation.

4.5 Mahout

Apache Mahout is used to implement all of the machine-learning capabilities of
BigBench; this will be exemplified with reference to Query 20 of BigBench in



this section. The SQL-MR implementation of Query 20 can be seen in Listing
1.8.

Query 20 :

Customer segmentation for return analysis: Customers are separated
along the following dimensions: return frequency, return order ratio (to-
tal number of orders partially or fully returned versus the total num-
ber of orders), return item ratio (total number of items returned versus
the number of items purchased), return amount ration (total monetary
amount of items returned versus the amount purchased), return order
ratio. Consider the store returns during a given year for the computation.

CREATE VIEW sales_returns AS (
SELECT s.ss_sold_date_sk AS s_date ,

r.sr_returned_date_sk AS r_date ,
s.ss_item_sk AS item ,
s.ss_ticket_number AS oid ,
s.ss_net_paid AS s_amount ,
r.sr_return_amt AS r_amount ,
(CASE WHEN s.ss_customer_sk IS NULL

THEN r.sr_customer_sk ELSE s.ss_customer_sk END) AS cid ,
s.ss_customer_sk AS s_cid ,
sr_customer_sk AS r_cid

FROM store_sales s LEFT JOIN store_returns100 r ON
s.ss_item_sk = r.sr_item_sk

AND s.ss_ticket_number = r.sr_ticket_number
WHERE s.ss_sold_date_sk IS NOT NULL);

CREATE VIEW clusters AS (
SELECT cid ,

100.0 * COUNT (DISTINCT (CASE WHEN r_date IS NOT NULL
THEN oid ELSE NULL END))

/ COUNT (DISTINCT oid) AS r_order_ratio ,
SUM (CASE WHEN r_date IS NOT NULL THEN 1 ELSE 0 END)

/ COUNT (item) * 100 AS r_item_ratio ,
SUM (CASE WHEN r_date IS NOT NULL THEN r_amount ELSE 0 END)

/ SUM (s_amount) * 100 AS r_amount_ratio ,
COUNT (DISTINCT (CASE WHEN r_date IS NOT NULL

THEN r_date ELSE NULL END))
AS r_freq

FROM sales_returns
WHERE cid IS NOT NULL
GROUP BY 1

HAVING COUNT (DISTINCT (CASE WHEN r_date IS NOT NULL
THEN r_date ELSE NULL END)) > 1);

SELECT *
FROM kmeans (ON

(SELECT 1)
PARTITION BY 1
DATABASE (’benchmark ’)
USERID (’benchmark ’)
PASSWORD (’benchmark ’)
INPUTTABLE (’clusters AS c’)
OUTPUTTABLE (’user_return_groups ’)
NUMBERK(’4’));

SELECT clusterid , cid
FROM kmeansplot (ON

clusters AS c
PARTITION BY ANY
ON user_return_groups dimension



CENTROIDSTABLE (’user_return_groups ’))
ORDER BY clusterid , cid;

DROP TABLE user_return_groups;
DROP VIEW clusters;
DROP VIEW sales_returns;

Listing 1.8. Query 20 - SQL-MR Syntax

CREATE VIEW IF NOT EXISTS sales_returns AS
SELECT s.ss_sold_date_sk AS s_date ,

r.sr_returned_date_sk AS r_date ,
s.ss_item_sk AS item ,
s.ss_ticket_number AS oid ,
s.ss_net_paid AS s_amount ,
r.sr_return_amt AS r_amount ,
(CASE WHEN s.ss_customer_sk IS NULL

THEN r.sr_customer_sk ELSE s.ss_customer_sk END) AS cid ,
s.ss_customer_sk AS s_cid ,
sr_customer_sk AS r_cid

FROM store_sales s
LEFT OUTER JOIN store_returns r ON s.ss_item_sk = r.sr_item_sk AND

s.ss_ticket_number = r.sr_ticket_number
WHERE s.ss_sold_date_sk IS NOT NULL;

CREATE TABLE IF NOT EXISTS all_sales_returns AS
SELECT * FROM sales_returns;

CREATE VIEW IF NOT EXISTS clusters AS
SELECT cid ,

100.0 * COUNT(distinct(CASE WHEN r_date IS NOT NULL
THEN oid ELSE NULL end))

/ COUNT(distinct oid) AS r_order_ratio ,
SUM(CASE WHEN r_date IS NOT NULL

THEN 1 ELSE 0 END)
/ COUNT(item)*100 AS r_item_ratio ,

SUM(CASE WHEN r_date IS NOT NULL
THEN r_amount ELSE 0.0 END)

/ SUM(s_amount)*100 AS r_amount_ratio ,
COUNT(distinct (CASE WHEN r_date IS NOT NULL

THEN r_date ELSE NULL END)) AS r_freq
FROM all_sales_returns
WHERE cid IS NOT NULL

GROUP BY cid;

DROP TABLE IF EXISTS twenty;

CREATE TABLE IF NOT EXISTS twenty
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’ ’
LINES TERMINATED BY ’\n’
STORED AS TEXTFILE LOCATION ’/mahout_io/twenty/’ AS
SELECT * FROM clusters;

DROP TABLE IF EXISTS all_sales_returns;

Listing 1.9. Query 20 - Part 1 in Hive Syntax

The Hive/Mahout implementation of Query 20 can be seen in Listings 1.9
and 1.10. First the table clusters is created using Hive. It contains the fields on
which segmentation analysis will be performed, namely return_order_ratio,

return_item_ratio, return_amount_ratio, return_frequency. It is stored
as a single whitespace character-delimited text file which is used as the input
file to the Mahout k-means program that is shown in Listing 1.10



public class Twenty {
public static void writePointsToFile( List <Vector > points , String fileName ,

FileSystem fs , Configuration conf ) throws IOException {
Path path = new Path(fileName);
SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf , path ,

LongWritable.class , VectorWritable.class);
long recNum = 0;
VectorWritable vec = new VectorWritable ();
for ( Vector point : points ) {

vec.set(point);
writer.append(new LongWritable(recNum ++), vec);

}
writer.close();

}

public static List <Vector > getPoints( double [][] tuples ) {
List <Vector > points = new ArrayList <Vector >();
for ( int i = 0; i < tuples.length; i++ ) {

double [] fr = tuples[i];
Vector vec = new RandomAccessSparseVector(fr.length);
vec.assign(fr);
points.add(vec);

}
return points;

}

public static void main( String args[] ) throws IOException {
[..]
// number of centres is 4 as per Query 20
int k = 4;
List <Vector > vectors = getPoints(myPoints);
File tuples = new File("tuples");
if ( !tuples.exists () ) {

tuples.mkdir();
}
tuples = new File("tuples/points");
if ( !tuples.exists () ) {

tuples.mkdir();
}
Configuration conf = new Configuration ();
FileSystem fs = FileSystem.get(conf);
writePointsToFile(vectors ,"tuples/points/file1", fs, conf);
Path path = new Path("tuples/clusters/part -00000");
SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf ,

path , Text.class , Cluster.class);
for ( int i = 0; i < k; i++ ) {

Vector vec = vectors.get(i);
Cluster cluster = new Cluster(vec , i, new EuclideanDistanceMeasure ());
writer.append(new Text(cluster.getIdentifier ()), cluster);

}
writer.close();
KMeansDriver.run(conf , new Path("tuples/points"), new

Path("tuples/clusters"), new Path("output"), new
EuclideanDistanceMeasure (), 0.001, 10, true , false);

SequenceFile.Reader reader = new SequenceFile.Reader(fs,
new Path("output/" + Cluster.CLUSTERED_POINTS_DIR + "/part -m -00000"),
conf);

IntWritable key = new IntWritable ();
WeightedPropertyVectorWritable value = new

WeightedPropertyVectorWritable ();
[..]
reader.close();

}
}

Listing 1.10. Query 20 - Part 2 as a Mahout Program



The k-means clustering algorithm in Mahout has a very specific control flow.
First, each input tuple (which is a single line in the input clusters file) is con-
verted into a vector; the cardinality of the tuple is preserved by this opera-
tion. In the Java program, the getPoints() method does this by creating a
RandomAccessSparseVector for each tuple. Then, these vectors are written to
a file in the specified input directory; the writePointsToFile() method does
this creating VectorWritable and SequenceFileWriter objects to create the
writable representation of the vector and to perform the write-operation respec-
tively. In this process, a Hadoop-specific data type –LongWritable– is used.
Finally, the points are clustered in several passes over the input vectors and the
output after each pass is stored in separate subdirectories within the output di-
rectory. In the program, this final step is commenced by running the static func-
tion run() from the KMeansDriver class, which takes in the similarity measure to
be used to perform the clustering (in this case, the EuclideanDistanceMeasure)
as a parameter.

The program is called from the command line using Hadoop streaming; the
program is run as shown in Listing 1.11. However, before using the Hadoop
streaming feature, the respective Mahout libraries must be added to the HADOOP_
CLASSPATH environment variable. The exact libraries to be included for this
particular program are shown in listing 1.11.

$ export
HADOOP_CLASSPATH =~/ mahout/mahout -core -0.6. jar :~/ mahout/mahout -math -0.
6.jar:~/ mahout/mahout -core -0.6-job.jar

$ /home/usr/hadoop -0.20.2/ bin/hadoop jar Twenty.jar Twenty
/mahout_io/Twenty /000000 _0 /mahout_io/Twenty

Listing 1.11. Running K-means Program of Query 20 Using Hadoop Streaming

5 Evaluation

We run a proof-of-concept evaluation on a single setup. The system was fitted
with 5.8 GB of RAM, a 750 GB SATA hard-disk, and a 3.2 GHz Intel Xeon
Quadcore processor. Each query was run on a 1.3 GB data set, the results are
shown in Table 5. The System Runtime attribute corresponds to the time ob-
tained by using the Unix time command when running the queries. The Reported
Time attribute corresponds to the time reported by Hive and Mahout respec-
tively; it should be noted that for queries which require running multiple engines,
the numbers in the table correspond to the sum of the partial running time of
each engine.

The results are plotted in Figure 3. In general, the Unix time utility reported
a higher time than the internal time reporting feature of Hive and Mahout. The
internal time reporting feature of both Hive and Mahout displays the time it
takes to complete a specified Map-Reduce job, so the difference between the two
depicted times corresponds to the set-up and tear-down time of the system for
each query.

In particular, Query 13 takes a noticeably longer time than the other queries
due to the presence of many JOIN statements. Each JOIN statement is translated



Query System Runtime/s Reported Time/s Query Actual Runtime/s Reported Time/s

1 97 96 2 58 56

3 38 37 4 279 275

5 34 33 6 294 264

7 298 282 8 51 47

9 185 174 10 13 11

11 69 60 12 105 174

13 4694 4373 14 219 216

15 844 783 16 170 109

17 349 347 18 642 548

19 91 88 20 206 157

21 273 271 22 293 292

23 634 498 24 195 193

25 202 160 26 62 60

27 55 52 28 32 30

29 294 288 30 301 296

Unix time Internal runtime
1 97.777 96.439
2 58.116 56.276
3 38.383 36.742
4 279 274.843
5 34.646 32.865
6 294.147 264.194
7 298.776 281.803
8 50.569 47.263
9 185.564 174.247

10 13.158 11.403
11 69.298 59.855
12 105.069 174.247
13 4694.2 4372.65
14 219.041 215.806
15 844.444 782.926
16 170.103 108.908
17 348.913 347.046
18 641.956 548.268
19 90.573 88.486
20 205.792 156.725
21 273.128 271.323
22 293.249 291.517
23 633.72 497.865
24 194.618 192.658
25 201.891 159.887
26 62.137 60.474
27 54.9 52.057
28 32.305 30.361
29 294.005 287.853
30 301.133 296.266
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to a map-reduce job by Hive based on the join condition, and since the query was
run on a single node, the query execution engine incurred considerable loss in
time due to the set-up and tear-down time consumed by each individual job.Also,
the tables that are joined in this query are much richer in content than in the
other queries.

6 Related Work

TPC benchmarks are commonly used for benchmarking big data systems. For
big data analytics, TPC-H and TPC-DS are obvious choices and TPC-H has
been implemented in Hadoop, Pig7, and Hive8 [10, 11]. A subset of TPC-DS
has recently been used to compare DBMSes with Impala and Hive9. However,
TPC-H and TPC-DS are pure SQL benchmarks and thus do not cover all the
different aspects that MapReduce systems are typically used for. Several pro-
posals try to modify TPC-DS similar to BigBench to cover typical big data use
cases. Zhao et al. propose Big DS, which extends the TPC-DS model with social
marketing and advertisement [12]. Currently, Big DS is in a very early design
stage and no query set and data model are available. Once the benchmark has
matured, it should be possible to complement BigBench with the Big DS pro-
posal. Another TPC-DS modification is proposed by Yi and Dai as part of the
HiBench suite [13, 14]. The authors use the TPC-DS model to generate web logs
similar to BigBench. Unlike BigBench the authors use this for an ETL process.
This again is orthogonal to BigBench and can be included in future work. There
have been several other proposals, most of which are component benchmarks
testing specific functions of the big data systems. Two notable examples are the
Berkeley Big Data Benchmark10 and the benchmark presented by Pavlo et al.
[15]. Another example is BigDataBench, which is a suite similar to HiBench and
mainly targeted at hardware benchmarking [16]. Although interesting and very
useful, these benchmarks do not present an end to end scenario and thus have
another focus than BigBench.

7 Conclusion

BigBench is the only fully specified end to end benchmark for big data analytics
currently available. In this paper, we presented details about our ongoing imple-
mentation for the Hadoop ecosystem. The implementation is completely based
on open-source libraries and frameworks typically used in big data deployments.
The queries and the data set can be downloaded from the MSRG website11.

For future work, we will work on improving the data generation and the data
model. We are currently building a complete kit for measuring the end to end

7 https://issues.apache.org/jira/browse/PIG-2397
8 https://issues.apache.org/jira/browse/HIVE-600
9 http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed/

10 https://amplab.cs.berkeley.edu/benchmark/
11 http://msrg.org



processing time including loading and refresh. We will investigate the inclusion
of other proposals such as the ETL-pipeline proposed as part of the HiBench
suite [14].

References

1. Carey, M.J.: BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities.
In Nambiar, R., Poess, M., eds.: Selected Topics in Performance Evaluation and
Benchmarking. Volume 7755 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2013) 108–123

2. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen., H.A.:
BigBench: Towards an industry standard benchmark for big data analytics. In:
Proceedings of the ACM SIGMOD Conference. (2013)
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