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Abstract. BigBench was the first proposal for an end-to-end big data analytics
benchmark. It features a set of 30 realistic queries based on real big data use
cases. It was fully specified and completely implemented on the Hadoop stack. In
this paper, we present updates on our development of a complete implementation
on the Hadoop ecosystem. We will focus on the changes that we have made to
data set, scaling, refresh process, and metric.

1 Introduction

Modern storage technology enables storing more and more detailed information. Re-
tailers are able to record all user interaction to improve shopping experience and mar-
keting. This is enabled by new big data management systems. These are new storage
systems that make it possible to manage and process ever larger amounts of data. To date
a plethora of different systems is available featuring new technologies and query lan-
guages. This makes it hard for customers to compare features and performance of differ-
ent systems. To this end, BigBench, the first proposal for an end-to-end big data analyt-
ics benchmark [1] was developed. BigBench was designed to cover essential functional
and business aspects of big data use cases.

In this paper, we present updates on our alternative implementation of the BigBench
workload for the Hadoop eco-system. We reimplemented all 30 queries and the data
generator. We adapted metric, scaling, data set, and refresh process the fit the needs of
a big data benchmark.

The rest of the paper is organized as follows. In Section 2, we present a brief
overview of the BigBench benchmark. Section 3 introduces the new scaling model
for BigBench. We give details on refresh process in Section 4. Section 5 presents our
proposal for a new big data metric. Section 6 gives an overview of related work. We
conclude with future work in Section 7.

2 BigBench Overview

BigBench is based on the Transaction Processing Performance Council’s (TPC) new de-
cision support benchmark TPC-DS [2, 3]. TPC-DS models a retail business with store,



Unstructured 
Data

Semi-Structured Data

Structured Data

Sales

Customer

ItemMarketprice

Web Page

Web Log

Reviews

Adapted
TPC-DS

BigBench
Specific

Fig. 1. BigBench Schema

online, and catalog market channels. For BigBench the catalog channel was dropped
and additional big data related information sources were added. The reason for this
was that catalog sales are becoming ever less important in current retail businesses and
more and more additional information sources are included in big data analytics. A
high-level overview of the extended data model can be seen in Figure 1. The picture
shows the sales channel, which in the full schema consists of web sales, web returns,
store sales, and store returns. The dimension marketprice was added to store competi-
tors’ prices. The Web Log portion represents a click stream that records user behavior
on the online presence. The click stream is stored in comma separated value form but
resembles a web server log. The product reviews contain full text that is used for natu-
ral language processing. The complete schema is described in [4]. In this new version
of the data generator, the complete data set was implemented using the parallel data
generation framework [5].

BigBench features 30 complex queries, 10 of which are taken from TPC-DS. The
queries are covering the major areas of big data analytics [6]. As a result, they cannot
be expressed by pure SQL queries. The full list of queries in Teradata Aster SQL-MR
syntax can be found in [4]. In the current version, all queries were implemented using
Hadoop, Hive, Mahout, OpenNLP [7].

3 BigBench Scaling

As the original BigBench implementation was partially based on the TPC-DS data gen-
erator DSDGen, it was bound to the same restrictions in terms of scaling. DS achieves
perfect data size scalability, i.e., data is exactly scaling as specified by the scale factor
scale. This is done by restricting the scale factor to certain numbers (100, 300, 1000,
3000, 10000, 30000, 100000) and fine tuning the table sizes to the correct data size for
each scale factor. This limits the maximum data size to 100TB. Furthermore, there are
no intermediate data sizes, which makes it hard to test load boundaries of a system or



testing the optimal load factor. Therefore, we have redesigned the scaling to allow for a
continuous scaling.

Simply using a linear scale factor for all table sizes is not an option for BigBench,
since it is supposed to scale across a very wide range of scale factors. Our initial target
is to have reasonable table sizes for all tables for the range of 1 GB to 1 PB, allowing for
small and fast experimental tests up to large scale scale out experiments. This means
that the number of entries of a linearly scaled table will be increased by a factor of
106 for the 1 PB data set. This is not realistic for many of the tables, for example,
it is unlikely that a company has more than 50K stores worldwide. For comparison,
Walmart, the world’s largest retailer has 11K stores4, McDonald’s has 33K restaurants
worldwide5, Starbucks has 17K stores worldwide6. Consequently, several tables in the
schema cannot be scaled linearly. TPC-DS uses linear, logarithmic, and square root
order of growth for different tables but the individual numbers are hand adjusted. We
use the same approach but uniformly adjust the linear scaling factors to make up for the
non-linear growth of other tables. An overview of all tables and their growth factors can
be seen in Table 1.

Table Name # Rows SF 1 Bytes/Row Scaling
date 109573 141 static
time 86400 75 static
ship mode 20 60 static
household demographics 7200 22 static
customer demographics 1920800 40 static
customer 100000 138 square root
customer address 50000 107 square root
store 12 261 square root
warehouse 5 107 logarithmic
promotion 300 132 logarithmic
web page 60 134 logarithmic
item 18000 308 square root
item marketprice 90000 43 square root
inventory 23490000 19 square root * logarithmic
store sales 810000 143 linear
store returns 40500 125 linear
web sales 810000 207 linear
web returns 40500 154 linear
web clickstreams 6930000 27 linear
product reviews 98100 670 linear

Table 1. Overview of Table Growth Factors

4 Walmart Interactive Map - http://corporate.walmart.com/our-story/
our-business/locations/#/

5 McDonald’s FAQs http://www.mcdonalds.ca/ca/en/contact_us/faq.html
6 Starbucks Company Profile - http://www.starbucks.com/about-us/
company-information



To adjust the sublinear growth of some of the tables, we increase the linear scaling
factor by the percentage that is missing to get a linear scaling of the data size. This can
be computed by measuring the relative data size of each different class of growth factor
for scale factor 1. For example, the linearly scaled tables are contributing roughly 50%
of the data to the 1 GB data set. The rest comes from static and sublinearly scaling
tables. The strongest growing table of the latter is inventory, which contains a record
for every item in every warehouse every day. To make up for the missing data size we
compute the difference in growth between the linear factor and the sublinear factors in
comparison to the base size and increase the linear factor by this factor:

LF = SF + (SF − (log5(SF ) ∗
√
SF )) = 2SF − log5(SF ) ∗

√
SF (1)

Where LF is the linear factor and SF is the scale factor. For large scale factors
the linear factor converges towards 2SF and thus the linearly scaling tables make up
almost the complete data size as expected.

4 Refresh

The refresh process initially specified in BigBench is an exact copy of the TPC-DS
refresh [1]. TPC-DS mandates the refresh to happen during a throughput test. Given S
streams of query sequences, each simulating a user, there are S/2 refresh operations
each scheduled after 198 queries are completed in total in the streams (each stream runs
99 queries for a total of 99 ∗ S queries in all streams). This was added to TPC-DS later
to ensure that systems are able to deal with trickle updates and do not ”over-optimize”
the storage layout. Many big data systems, hovever, process data in a batch oriented
fashion. In this model, data is either completely loaded fresh after new data has to be
processed or updates are processed in bulk as is also common in many data warehouses.
In current Hive, for instance, any update of the data means overwriting complete files,
since files in HDFS are immutable. Therefore, we have changed the refresh model to
a single bulk update in between two throughput runs. This ensures that refresh has to
be handled by the system (even if it means a complete reload of the data) but at the
same time the refresh will not enforce stopping a throughput run, which would be the
case using TPC-DS’ update mechanism. By default, new data in the size of 1% of the
original data set is inserted in the refresh phase. The size of the refresh data for each
table is determined by the scaling model described in Section 3.

5 Metric

We propose a new metric for BigBench to take the batch-oriented processing of many
big data systems into account and to include all parts of the benchmark. As BigBench
aims at becoming an industry standard benchmark, we require a combined metric that
returns a single (abstract) value that can be used to compare the entire end-to-end per-
formance of big data analytics systems. The initially proposed metric for BigBench was
loosely based on the TPC-DS metric. It consisted of four measurements:



TL: Execution time of the loading process;
TD: Execution time of the declarative queries;
TP : Execution time of the procedural queries;
TM : Execution time of queries with procedural and declarative aspects.

The complete metric was specified as the geometric mean of these four measure-
ments:

Metric = 4
√
TL ∗ TD ∗ TP ∗ TM (2)

The intuition behind the metric was that some systems are optimized for declarative
queries while others are optimized for procedural queries and the classification can give
an indication on the type of system that is benchmarked. There are a couple of problems
with this metric, most notably the classification of queries, which is debatable. Because
the concrete implementation of queries is not enforced the classification does not uni-
formly apply. For example, in Hive all queries will be transformed to MapReduce jobs
and thus finally be run in a procedural way. Furthermore, the metric does not consider
the refresh process or parallel execution of queries. To address these issues, we have
revisited the TPC-H [8] and TPC-DS metrics [3]. To explain the reasoning behind the
new metric, we will give a short overview of these two metrics as specified in the cur-
rent versions. Both, TPC-H and TPC-DS specify two performance tests, a power test
and a throughput test. The resulting numbers are meant to be comparable for a certain
database size. The power test represents a single user run and shows the ability of a
system to run a single stream of queries. The throughput test represents a multi user
scenario where many queries are executed in parallel.

In TPC-H the power test is specified as a serial run of all 22 queries and one refresh
process before and one after the query run. The power metric is defined as follows:

Power Metric@Size =
3600 ∗ SF

24

√
TR1 ∗

∏22
i=1 TQi ∗ TR2

(3)

Where Tx is the processing time of a query or refresh function in seconds. The
total metric is the geometric mean of the number of queries and refreshes that can be
processed per hour multiplied by the scale factor. The reasoning behind multiplying
with the scale factor is probably a higher comparability between different scale factors,
since the data size in GB equals the scale factor. The throughput test is specified as a run
of S serial streams of each a permutation of the 22 queries and a separate stream of 2S
refresh functions. The scheduling of the refresh stream is not specified. The throughput
metric is specified as follows:

Throughput Metric@Size =
S ∗ 22 ∗ 3600 ∗ SF

TS
(4)

Where S is the number of streams and TS is the total execution time of the through-
put test. The metric is similar to the power metric but it computes the arithmetic mean
of the processing times. It is unclear why the refresh functions are not considered in the
arithmetic mean. Again the resulting average number of queries per hour is multiplied
with the scale factor.



TPC-H does not consider the loading time as part of the metric. The final metric is
specified as the geometric mean of the power metric and the throughput metric:

Queries per hour@Size =
√

Power Metric@Size ∗ Throughput Metric@Size (5)

TPC-DS has the same possible variables, the number of streams in the throughput
test S and the scale factor SF . The TPC-DS metric consists of 3 parts:

TLD: The load factor;
TPT : The power test factor;
TTT : The throughput factor.

The load factor is computed by measuring the time it takes to load the data Tload
multiplied with the number of stream S in the throughput test and a factor 0.01: TLD =
Tload ∗ S ∗ 0.01.

The power test is a serial run of all 99 queries of TPC-DS. There is no data refresh
in the power test in TPC-DS. The power test factor is the total execution time of the
power test multiplied by the number of streams: TPT = TPower ∗ S.

The throughput test consists of two independent, consecutive runs of S parallel
query streams interspersed with S/2 refresh functions. Each of the streams executes
all 99 queries in a permutation specified by TPC-DS. The reported time is the total
execution time of both runs. All times are reported in hours.

The complete DS metric is specified as follows:

QphDS@SF =

⌊
SF ∗ 3 ∗ S ∗ 99

TLD + TPT + TTT

⌋
(6)

Note that this metric is different than the initially presented metric for TPC-DS
as specified in [2]. The initially specified metric did not contain the power test and
specified a separate data maintenance phase between two query runs:

QphDS@SFold =

⌊
SF ∗ S ∗ 198

TLD + TTT1
+ TDM + TTT2

⌋
(7)

Where TTT1
and TTT2

are the run times of the 2 throughput test runs and TDM is
the run time of the data maintenance. This metric was designed to compute the average
query throughput per hour including maintenance tasks. Based on these two metrics,
we have designed a new metric that takes the application scenario of BigBench into
account. The metric includes the following components:

TL: Execution time of the loading process;
TP : Execution time of the power test;
TTT1

: Execution time of the first throughput test;
TDM : Execution time of the data maintenance task.
TTT2

: Execution time of the second throughput test;



All times are measured in seconds in at least 0.1 precision. In TPC-H loading is
not measured at all, which is only valid if loading is a very rare activity in the life-
cycle of a database. In TPC-DS a 1% fraction of the load time is incorporated in the
metric, which is then multiplied by the number of streams to increase the impact of the
effort of loading for increasing number of streams. This still implies loading is a rare
operation in the targeted application. Since we believe that loading is an essential part
of the workload in big data applications, we keep the full loading time in the metric.
The finally reported metric is similar to the initial metric of TPC-DS:

BBQpH =
30 ∗ 3 ∗ S ∗ 3600

S ∗ TL + S ∗ TP + TTT1
+ S ∗ TDM + TTT2

(8)

The metric reports the mean queries per hour including the loading time and data
maintenance time. The times are multiplied with the number of streams in order to keep
the impact of the power test, the loading, and the data maintenance stable. The total
number of queries run is 30 ∗ (2 ∗ S + 1), but since the run time of the power test is
multiplied by S, the 30 queries in that run are counted S times. Therefore the numerator
of the metric is 30 ∗ 3 ∗ S times the number of seconds in an hour.

6 Related Work

Today, TPC benchmarks are commonly used for benchmarking big data systems. For
big data analytics, TPC-H and TPC-DS are obvious choices and TPC-H has been im-
plemented in Hadoop, Pig7, and Hive8 [9, 10]. Subsets of TPC-DS queries have been
implemented in Impala9, Hive, Hawq, Shark, and others. TPC-H and TPC-DS are pure
SQL benchmarks and do not cover all the different aspects that MapReduce systems are
typically used for.

Several proposals try to modify TPC-DS similar to BigBench to cover typical big
data use cases. Zhao et al. propose Big DS, which extends the TPC-DS model with so-
cial marketing and advertisement [11]. To resemble the ETL part of a big data workload,
Yi and Dai have modified TPC-DS as part of the HiBench suite [12, 13]. The authors
use the TPC-DS model to generate web logs similar to BigBench and use custom up-
date functions to simulate an ETL process. Like BigDS this is orthogonal to BigBench
and can be included in future versions of the benchmark. There have been several other
proposals like the Berkeley Big Data Benchmark10 and the benchmark presented by
Pavlo et al. [14]. Another example is BigDataBench, which is a suite similar to Hi-
Bench and mainly targeted at hardware benchmarking [15]. Although interesting and
useful, both benchmarks do not reflect an end-to-end scenario and thus have another
focus than BigBench.

7 https://issues.apache.org/jira/browse/PIG-2397
8 https://issues.apache.org/jira/browse/HIVE-600
9 http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed/

10 https://amplab.cs.berkeley.edu/benchmark/



7 Conclusion

BigBench is the only fully specified end-to-end benchmark for big data analytics cur-
rently available. In this paper, we present updates on the data model, refresh, metric,
and scaling. The queries and the data set can be downloaded from GitHub11.
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