In-Database Machine Learning Inference (Sommersemester 2023)
Dozent:
Prof. Dr. Tilmann Rabl
(Data Engineering Systems)
,
Ricardo Salazar Diaz
(Data Engineering Systems)
Alle Informationen zu Inhalten, Leistungserfassung und Terminen finden Sie unter folgender Adresse:
Website zum Kurs:
https://hpi.de/rabl/teaching/summer-term-2023/in-database-machine-learning-inference.html
Allgemeine Information
- Semesterwochenstunden: 4
- ECTS: 6
- Benotet:
Ja
- Einschreibefrist: 01.04.2023 - 07.05.2023
- Lehrform: Projektseminar
- Belegungsart: Wahlpflichtmodul
- Lehrsprache: Englisch
- Maximale Teilnehmerzahl: 12
Studiengänge, Modulgruppen & Module
- DANA: Data Analytics
- HPI-DANA-K Konzepte und Methoden
- DANA: Data Analytics
- HPI-DANA-T Techniken und Werkzeuge
- DANA: Data Analytics
- HPI-DANA-S Spezialisierung
- DASY: Data Systems
- HPI-DASY-K Konzepte und Methoden
- DASY: Data Systems
- HPI-DASY-T Techniken und Werkzeuge
- DASY: Data Systems
- HPI-DASY-S Spezialisierung
- SSYS: Software Systems
- HPI-SSYS-C Concepts and Methods
- SSYS: Software Systems
- HPI-SSYS-T Technologies and Tools
- SSYS: Software Systems
- HPI-SSYS-S Specialization
- DSYS: Data-Driven Systems
- HPI-DSYS-C Concepts and Methods
- DSYS: Data-Driven Systems
- HPI-DSYS-T Technologies and Tools
- DSYS: Data-Driven Systems
- HPI-DSYS-S Specialization
- OSIS: Operating Systems & Information Systems Technology
- HPI-OSIS-K Konzepte und Methoden
- OSIS: Operating Systems & Information Systems Technology
- HPI-OSIS-S Spezialisierung
- OSIS: Operating Systems & Information Systems Technology
- HPI-OSIS-T Techniken und Werkzeuge
- SAMT: Software Architecture & Modeling Technology
- HPI-SAMT-K Konzepte und Methoden
- SAMT: Software Architecture & Modeling Technology
- HPI-SAMT-S Spezialisierung
- SAMT: Software Architecture & Modeling Technology
- HPI-SAMT-T Techniken und Werkzeuge
Zurück