Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI
 

Einführung in Data Science und Machine Learning (Sommersemester 2024)

Dozent: Prof. Dr. Gerard de Melo (Artificial Intelligence and Intelligent Systems)
Website zum Kurs: https://moodle.hpi.de/course/view.php?id=772

Allgemeine Information

  • Semesterwochenstunden: 4
  • ECTS: 6
  • Benotet: Ja
  • Einschreibefrist: 01.04.2024-30.04.2024
  • Prüfungszeitpunkt §9 (4) BAMA-O: 12.08.2024
  • Lehrform: Vorlesung / Übung
  • Belegungsart: Wahlpflichtmodul
  • Lehrsprache: Englisch

Studiengänge, Modulgruppen & Module

IT-Systems Engineering BA

Beschreibung

Das Leben in unserer modernen Welt wird fundamental von digitalen Daten geprägt. In immer mehr Fällen bestimmen letztendlich Daten welche Unternehmen erfolgreich sind, wer sich gegen seine politischen Kontrahenten durchsetzen kann oder gar wer bei der Partnerwahl in Erwägung gezogen wird. Dieser Kurs bietet einen ersten Überblick über Data Science und Machine Learning und ihrer Relevanz für moderne Künstliche Intelligenz.

 

Lehrinhalte:

  • Datensammlung, Data Parsing und Preprocessing
  • Datenanalyse und -visualisierung
  • Graphstrukturierte Daten
  • Clustering
  • Grundkonzepte des Maschinellen Lernens
  • Maschinelles Lernen: Regression
  • Maschinelles Lernen: Klassifikation
  • Maschinelles Lernen: verschiedene Algorithmen, inklusive Grundprinzipien neuronaler Netze/Deep Learning
  • Maschinelles Lernen: Evaluierung und Durchführung von Experimenten
  • Umgang mit Textdaten und einige Grundlagen von Large Language Models
  • Fairness und Bias
  • Data Mining-Algorithmen

Voraussetzungen

Programmierkenntnisse und Schulmathematik

Lern- und Lehrformen

Vorlesung mit integrierter Übung: Einige der Vorlesungstermine werden als praktische Übung gestaltet.

Die Lehrsprache ist aber Deutsch. Die Übungsblätter und Klausur werden deutschsprachig verfasst, aber die Vorlesungsfolien liegen ausschließlich in englischer Sprache vor.

Leistungserfassung

Die Gesamtnote ergibt sich zu 100% aus der Klausurnote.

Prüfungsnebenleistungen:
Voraussetzung zur Anmeldung zur Klausur ist die erfolgreiche Bearbeitung einiger Übungsblätter (verteilt im Laufe des Semesters).

Termine

Siehe HPI-Stundenplan.

Zurück