Data Management for Digital Health (Wintersemester 2019/2020)
Dozent:
Dr.-Ing. Matthieu-Patrick Schapranow
(Digital Health - Personalized Medicine)
Tutoren:
M.Sc. Florian Borchert
Website zum Kurs:
https://hpi.de/digital-health-cluster/teaching/archive/winter-term-201920/data-management-for-digital-health.html
Allgemeine Information
- Semesterwochenstunden: 4
- ECTS: 6
- Benotet:
Ja
- Einschreibefrist: 01.10.-30.10.2019
- Lehrform: Vorlesung / Übung
- Belegungsart: Wahlpflichtmodul
- Lehrsprache: Englisch
Studiengänge, Modulgruppen & Module
- BPET: Business Process & Enterprise Technologies
- HPI-BPET-K Konzepte und Methoden
- BPET: Business Process & Enterprise Technologies
- HPI-BPET-T Techniken und Werkzeuge
- BPET: Business Process & Enterprise Technologies
- HPI-BPET-S Spezialisierung
- OSIS: Operating Systems & Information Systems Technology
- HPI-OSIS-K Konzepte und Methoden
- OSIS: Operating Systems & Information Systems Technology
- HPI-OSIS-T Techniken und Werkzeuge
- OSIS: Operating Systems & Information Systems Technology
- HPI-OSIS-S Spezialisierung
- SAMT: Software Architecture & Modeling Technology
- HPI-SAMT-T Techniken und Werkzeuge
- SAMT: Software Architecture & Modeling Technology
- HPI-SAMT-K Konzepte und Methoden
- SAMT: Software Architecture & Modeling Technology
- HPI-SAMT-S Spezialisierung
- CODS: Complex Data Systems
- HPI-CODS-K Konzepte und Methoden
- CODS: Complex Data Systems
- HPI-CODS-T Techniken und Werkzeuge
- CODS: Complex Data Systems
- HPI-CODS-S Spezialisierung
- SCAD: Scalable Computing and Algorithms for Digital Health
- HPI-SCAD-C Concepts and Methods
- SCAD: Scalable Computing and Algorithms for Digital Health
- HPI-SCAD-T Technologies and Tools
- DICR: Digitalization of Clinical and Research Processes
- HPI-DICR-C Concepts and Methods
- DICR: Digitalization of Clinical and Research Processes
- HPI-DICR-T Technologies and Tools
- APAD: Acquisition, Processing and Analysis of Health Data
- HPI-APAD-C Concepts and Methods
- APAD: Acquisition, Processing and Analysis of Health Data
- HPI-APAD-T Technologies and Tools
Beschreibung
Welcome to the class: we are very excited that you are interested in learning more about the foundations data management for digital health. In this lecture, we will provide you concrete examples from the field of digital health to understand where and how data is acquired, what are the challenges with these specific types of data, and how to handle them with latest technology advances.
After participating in the course, you will be equipped with the ability to:
- assess requirements of selected real-world use cases from the medical field,
- select latest technology building blocks to create viable healthcare software solutions, and
- analyze requirements for data analysis and processing, e.g. for machine learning.
More about the course
Leistungserfassung
The final grading will be determined by the following individual parts whilst each part must be passed individually:
Termine
Tuesdays, 11 am & Thursdays, 9 am in G3 E. 15/16
Lecture starts October 14
Zurück