Friedrich, Tobias; Kötzing, Timo; Quinzan, Francesco; Sutton, Andrew Michael Resampling vs Recombination: a Statistical Run Time Estimation. Foundations of Genetic Algorithms (FOGA) 2017: 25-35
Noise is pervasive in real-world optimization, but there is still little understanding of the interplay between the operators of randomized search heuristics and explicit noise-handling techniques, such as statistical resampling. In this paper, we report on several statistical models and theoretical results that help to clarify this reciprocal relationship for a collection of randomized search heuristics on noisy functions. We consider the optimization of pseudo-Boolean functions under additive posterior Gaussian noise and explore the trade-o between noise reduction and the computational cost of resampling. We first perform experiments to find the optimal parameters at a given noise intensity for a mutation-only evolutionary algorithm, a genetic algorithm employing recombination, an estimation of distribution algorithm (EDA), and an ant colony optimization algorithm. We then observe how the optimal parameter depends on the noise intensity for the different algorithms. Finally, we locate the point where statistical resampling costs more than it is worth in terms of run time. We find that the EA requires the highest number of resamples to obtain the best speed-up, whereas crossover reduces both the run time and the number of resamples required. Most surprisingly, we find that EDA-like algorithms require no resampling, and can handle noise implicitly.
Chauhan, Ankit; Friedrich, Tobias; Quinzan, Francesco Approximating Optimization Problems using EAs on Scale-Free Networks. Genetic and Evolutionary Computation Conference (GECCO) 2017: 235-242
It has been experimentally observed that real-world networks follow certain topologicalproperties, such as small-world, power-law etc. To study these networks, many random graph models, such as Preferential Attachment, have been proposed. In this paper, we consider the deterministic properties which capture power-law degree distribution and degeneracy. Networks with these properties are known as scale-free networks in the literature. Many interesting problems remain NP-hard on scale-free networks. We study the relationship between scale-free properties and the approximation-ratio of some commonly used evolutionary algorithms. For the Vertex Cover, we observe experimentally that the \((1+1)\) EA always gives the better result than a greedy local search, even when it runs for only \(O(n, \log(n))\) steps. We give the construction of a scale-free network in which a multi-objective algorithm and a greedy algorithm obtain optimal solutions, while the \((1+1)\) EA obtains the worst possible solution with constant probability. We prove that for the Dominating Set, Vertex Cover, Connected Dominating Set and Independent Set, the \((1+1)\) EA obtains constant-factor approximation in expected run time \(O(n, \log(n))\) and \(O(n^4)\) respectively. Whereas, GSEMO gives even better approximation than \((1+1)\) EA in expected run time \(O(n^3)\) for Dominating Set, Vertex Cover and Connected Dominating Set on such networks.