Bampas, Evangelos; Göbel, Andreas-Nikolas; Pagourtzis, Aris; Tentes, Aris On the connection between interval size functions and path counting. Computational Complexity 2017: 421-467
We investigate the complexity of hard (\#P-complete) counting problems that have easy decision version. By ‘easy decision,’ we mean that deciding whether the result of counting is nonzero is in P. This property is shared by several well-known problems, such as counting the number of perfect matchings in a given graph or counting the number of satisfying assignments of a given DNF formula. We focus on classes of such hard-to-count easy-to-decide problems which emerged through two seemingly disparate approaches: one taken by Hemaspaandra et al. (SIAM J Comput 36(5):1264–1300, 2007), who defined classes of functions that count the size of intervals of ordered strings, and one followed by Kiayias et al. (Lect Notes Comput Sci 2563:453–463, 2001), who defined the classTotP, consisting of functions that count the total number of paths of NP computations. We provide inclusion and separation relations between TotP and interval size counting classes, by means of new classes that we define in this work. Our results imply that many known #P-complete problems with easy decision are contained in the classes defined by Hemaspaandra et al., but are unlikely to be complete for these classes under reductions under which these classes are downward closed, e.g., parsimonious reductions. This, applied to the #MONSAT problem, partially answers an open question of Hemaspaandra et al. We also define a new class of interval size functions which strictly contains FP and is strictly contained in TotP under reasonable complexity-theoretic assumptions. We show that this new class contains hard counting problems.
Galanis, Andreas; Göbel, Andreas; Goldberg, Leslie Ann; Lapinskas, John; Richerby, David Amplifiers for the Moran Process. Journal of the ACM 2017: 5:1-5:90
The Moran process, as studied by Lieberman, Hauert, and Nowak, is a randomised algorithm modelling the spread of genetic mutations in populations. The algorithm runs on an underlying graph where individuals correspond to vertices. Initially, one vertex (chosen uniformly at random) possesses a mutation, with fitness \(r > 1\). All other individuals have fitness 1. During each step of the algorithm, an individual is chosen with probability proportional to its fitness, and its state (mutant or nonmutant) is passed on to an out-neighbour which is chosen uniformly at random. If the underlying graph is strongly connected, then the algorithm will eventually reach fixation, in which all individuals are mutants, or extinction, in which no individuals are mutants. An infinite family of directed graphs is said to be strongly amplifying if, for every \(r > 1\), the extinction probability tends to 0 as the number of vertices increases. A formal definition is provided in the article. Strong amplification is a rather surprising property-it means that in such graphs, the fixation probability of a uniformly placed initial mutant tends to 1 even though the initial mutant only has a fixed selective advantage of \(r > 1\) (independently of \(n\)). The name "strongly amplifying" comes from the fact that this selective advantage is "amplified." Strong amplifiers have received quite a bit of attention, and Lieberman et al. proposed two potentially strongly amplifying families-superstars and metafunnels. Heuristic arguments have been published, arguing that there are infinite families of superstars that are strongly amplifying. The same has been claimed for metafunnels. In this article, we give the first rigorous proof that there is an infinite family of directed graphs that is strongly amplifying. We call the graphs in the family "megastars." When the algorithm is run on an \(n\)-vertex graph in this family, starting with a uniformly chosen mutant, the extinction probability is roughly \(n - 1/2\) (up to logarithmic factors). We prove that all infinite families of superstars and metafunnels have larger extinction probabilities (as a function of \(n\)). Finally, we prove that our analysis of megastars is fairly tight - there is no infinite family of megastars such that the Moran algorithm gives a smaller extinction probability (up to logarithmic factors). Also, we provide a counterexample which clarifies the literature concerning the isothermal theorem of Lieberman et al.