Friedrich, Tobias; Kötzing, Timo; Quinzan, Francesco; Sutton, Andrew M. Ant Colony Optimization Beats Resampling on Noisy FunctionsGenetic and Evolutionary Computation Conference (GECCO) 2016: 3–4
Despite the pervasiveness of noise in real-world optimization, there is little understanding of the interplay between the operators of randomized search heuristics and explicit noise-handling techniques such as statistical resampling. Ant Colony Optimization (ACO) algorithms are claimed to be particularly well-suited to dynamic and noisy problems, even without explicit noise-handling techniques. In this work, we empirically investigate the trade-offs between resampling an the noise-handling abilities of ACO algorithms. Our main focus is to locate the point where resampling costs more than it is worth.
Dang, Duc-Cuong; Friedrich, Tobias; Krejca, Martin S.; Kötzing, Timo; Lehre, Per Kristian; Oliveto, Pietro S.; Sudholt, Dirk; Sutton, Andrew Michael Escaping Local Optima with Diversity Mechanisms and CrossoverGenetic and Evolutionary Computation Conference (GECCO) 2016: 645–652
Population diversity is essential for the effective use of any crossover operator. We compare seven commonly used diversity mechanisms and prove rigorous run time bounds for the \((\mu+1)\) GA using uniform crossover on the fitness function \(Jump_k\). All previous results in this context only hold for unrealistically low crossover probability \(p_c=O(k/n)\), while we give analyses for the setting of constant \(p_c < 1\) in all but one case. Our bounds show a dependence on the problem size \(n\), the jump length \(k\), the population size \(\mu\), and the crossover probability \(p_c\). For the typical case of constant \(k > 2\) and constant \(p_c\), we can compare the resulting expected optimisation times for different diversity mechanisms assuming an optimal choice of \(\mu\): \(O(n^{k-1})\) for duplicate elimination/minimisation, \(O(n^2 \log n)\) for maximising the convex hull, \(O(n \log n)\) for det. crowding (assuming \(p_c = k/n\)), \(O(n \log n)\) for maximising the Hamming distance, \(O(n \log n)\) for fitness sharing, \(O(n \log n)\) for the single-receiver island model. This proves a sizeable advantage of all variants of the \((\mu+1)\) GA compared to the (1+1) EA, which requires \(\Theta(n^k)\). In a short empirical study we confirm that the asymptotic differences can also be observed experimentally.
Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Nallaperuma, Samadhi; Neumann, Frank; Schirneck, Martin Fast Building Block Assembly by Majority Vote CrossoverGenetic and Evolutionary Computation Conference (GECCO) 2016: 661–668
Different works have shown how crossover can help with building block assembly. Typically, crossover might get lucky to select good building blocks from each parent, but these lucky choices are usually rare. In this work we consider a crossover operator which works on three parent individuals. In each component, the offspring inherits the value present in the majority of the parents; thus, we call this crossover operator majority vote. We show that, if good components are sufficiently prevalent in the individuals, majority vote creates an optimal individual with high probability. Furthermore, we show that this process can be amplified: as long as components are good independently and with probability at least \(1/2+\delta\), we require only \(O(\log 1/\delta + \log \log n)\) successive stages of majority vote to create an optimal individual with high probability! We show how this applies in two scenarios. The first scenario is the Jump test function. With sufficient diversity, we get an optimization time of \(O(n \log n)\) even for jump sizes as large as \(O(n^{(1/2-\epsilon)})\). Our second scenario is a family of vertex cover instances. Majority vote optimizes this family efficiently, while local searches fail and only highly specialized two-parent crossovers are successful.
Dang, Duc-Cuong; Lehre, Per Kristian; Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Oliveto, Pietro S.; Sudholt, Dirk; Sutton, Andrew M. Emergence of Diversity and its Benefits for Crossover in Genetic AlgorithmsParallel Problem Solving From Nature (PPSN) 2016: 890–900
Population diversity is essential for avoiding premature convergence in Genetic Algorithms (GAs) and for the effective use of crossover. Yet the dynamics of how diversity emerges in populations are not well understood. We use rigorous runtime analysis to gain insight into population dynamics and GA performance for a standard \((\mu+1)\) GA and the \(Jump_k\) test function. By studying the stochastic process underlying the size of the largest collection of identical genotypes we show that the interplay of crossover followed by mutation may serve as a catalyst leading to a sudden burst of diversity. This leads to improvements of the expected optimisation time of order \(\Omega(n/ \log n)\) compared to mutation-only algorithms like the \((1+1)\) EA.
Friedrich, Tobias; Kötzing, Timo; Sutton, Andrew M. On the Robustness of Evolving PopulationsParallel Problem Solving From Nature (PPSN) 2016: 771–781
Most theoretical work that studies the benefit of recombination focuses on the ability of crossover to speed up optimization time on specific search problems. In this paper, we take a slightly different perspective and investigate recombination in the context of evolving solutions that exhibit \(\emph{mutational}\) robustness, i.e., they display insensitivity to small perturbations. Various models in population genetics have demonstrated that increasing the effective recombination rate promotes the evolution of robustness. We show this result also holds in the context of evolutionary computation by proving crossover promotes the evolution of robust solutions in the standard \((\mu+1)\) GA. Surprisingly, our results show that the effect is present even when robust solutions are at a selective disadvantage due to lower fitness values.
Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Sutton, Andrew M. Graceful Scaling on Uniform versus Steep-Tailed NoiseParallel Problem Solving From Nature (PPSN) 2016: 761–770
Recently, different evolutionary algorithms (EAs) have been analyzed in noisy environments. The most frequently used noise model for this was additive posterior noise (noise added after the fitness evaluation) taken from a Gaussian distribution. In particular, for this setting it was shown that the \((\mu + 1)\)-EA on OneMax does not scale gracefully (higher noise cannot efficiently be compensated by higher \(\mu\)). In this paper we want to understand whether there is anything special about the Gaussian distribution which makes the \((\mu + 1)\)-EA not scale gracefully. We keep the setting of posterior noise, but we look at other distributions. We see that for exponential tails the \((\mu + 1)\)-EA on OneMax does also not scale gracefully, for similar reasons as in the case of Gaussian noise. On the other hand, for uniform distributions (as well as other, similar distributions) we see that the \((\mu + 1)\)-EA on OneMax does scale gracefully, indicating the importance of the noise model.
Gao, Wanru; Friedrich, Tobias; Neumann, Frank Fixed-Parameter Single Objective Search Heuristics for Minimum Vertex CoverParallel Problem Solving From Nature (PPSN) 2016: 740–750
We consider how well-known branching approaches for the classical minimum vertex cover problem can be turned into randomized initialization strategies with provable performance guarantees and investigate them by experimental investigations. Furthermore, we show how these techniques can be built into local search components and analyze a basic local search variant that is similar to a state-of-the-art approach called NuMVC. Our experimental results for the two local search approaches show that making use of more complex branching strategies in the local search component can lead to better results on various benchmark graphs.
Doerr, Benjamin; Doerr, Carola; Kötzing, Timo Provably Optimal Self-Adjusting Step Sizes for Multi-Valued Decision VariablesParallel Problem Solving From Nature (PPSN) 2016: 782–791
We regard the problem of maximizing a OneMax-like function defined over an alphabet of size \(r\). In previous work [GECCO 2016] we have investigated how three different mutation operators influence the performance of Randomized Local Search (RLS) and the (1+1) Evolutionary Algorithm. This work revealed that among these natural mutation operators none is superior to the other two for any choice of \(r\). We have also given in [GECCO 2016] some indication that the best achievable run time for large \(r\) is \(\Theta(n log r(\log n + \log r))\), regardless of how the mutation operator is chosen, as long as it is a static choice (i.e., the distribution used for variation of the current individual does not change over time). Here in this work we show that we can achieve a better performance if we allow for adaptive mutation operators. More precisely, we analyze the performance of RLS using a self-adjusting mutation strength. In this algorithm the size of the steps taken in each iteration depends on the success of previous iterations. That is, the mutation strength is increased after a successful iteration and it is decreased otherwise. We show that this idea yields an expected optimization time of \(\Theta(n(\log n + \log r))\), which is optimal among all comparison-based search heuristics. This is the first time that self-adjusting parameter choices are shown to outperform static choices on a discrete multi-valued optimization problem.
Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S. {EDA}s cannot be Balanced and StableGenetic and Evolutionary Computation Conference (GECCO) 2016: 1139–1146
Estimation of Distribution Algorithms (EDAs) work by iteratively updating a distribution over the search space with the help of samples from each iteration. Up to now, theoretical analyses of EDAs are scarce and present run time results for specific EDAs. We propose a new framework for EDAs that captures the idea of several known optimizers, including PBIL, UMDA, \(\lambda\)-MMASIB, cGA, and \((1,\lambda)\)-EA. Our focus is on analyzing two core features of EDAs: a balanced EDA is sensitive to signals in the fitness; a stable EDA remains uncommitted under a biasless fitness function. We prove that no EDA can be both balanced and stable. The LeadingOnes function is a prime example where, at the beginning of the optimization, the fitness function shows no bias for many bits. Since many well-known EDAs are balanced and thus not stable, they are not well-suited to optimize LeadingOnes. We give a stable EDA which optimizes LeadingOnes within a time of \(O(n\,\log n)\).
Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Sutton, Andrew M. Robustness of Ant Colony Optimization to NoiseEvolutionary Computation 2016: 237–254
Recently Ant Colony Optimization (ACO) algorithms have been proven to be efficient in uncertain environments, such as noisy or dynamically changing fitness functions. Most of these analyses focus on combinatorial problems, such as path finding. We analyze an ACO algorithm in a setting where we try to optimize the simple OneMax test function, but with additive posterior noise sampled from a Gaussian distribution. Without noise the classical \((\mu+1)\)-EA outperforms any ACO algorithm, with smaller \(\mu\) being better; however, with large noise, the \((\mu+1)\)-EA fails, even for high values of \(\mu\) (which are known to help against small noise). In this paper we show that ACO is able to deal with arbitrarily large noise in a graceful manner, that is, as long as the evaporation factor \(p\) is small enough dependent on the parameter \(\delta^2\) of the noise and the dimension \(n\) of the search space \((p = o(1/(n(n + \delta \log n)^2 \log n)))\), optimization will be successful.