Bläsius, Thomas; Friedrich, Tobias; Krohmer, Anton Cliques in Hyperbolic Random GraphsAlgorithmica 2018: 2324–2344
Most complex real world networks display scale-free features. This characteristic motivated the study of numerous random graph models with a power-law degree distribution. There is, however, no established and simple model which also has a high clustering of vertices as typically observed in real data. Hyperbolic random graphs bridge this gap. This natural model has recently been introduced by Krioukov et al. and has shown theoretically and empirically to fulfill all typical properties of real world networks, including power-law degree distribution and high clustering. We study cliques in hyperbolic random graphs \(G\) and present new results on the expected number of \(k\)-cliques \(E[K_k]\) and the size of the largest clique \(\omega(G)\). We observe that there is a phase transition at power-law exponent \(\beta = 3\). More precisely, for \(\beta\)\(\in\)\((2,3)\) we prove \(E[K_k] = \) \(n^{k(3-\beta)/2} \Theta(k)^{-k}\) and \(\omega(G) = \) \(\Theta\)\((n^{(3-\beta)/2})\), while for \(\beta \geq 3\) we prove \(E[K_k]=n \Theta(k)^{-k}\) and \(\omega(G)=\Theta(\log(n)/ \log\log n)\). Furthermore, we show that for \(\beta \geq 3\), cliques in hyperbolic random graphs can be computed in time \(O(n)\). If the underlying geometry is known, cliques can be found with worst-case runtime \(O(m n^{2.5})\) for all values of \(\beta\).
Bringmann, Karl; Friedrich, Tobias; Krohmer, Anton De-anonymization of Heterogeneous Random Graphs in Quasilinear TimeAlgorithmica 2018: 3397–3427
There are hundreds of online social networks with altogether billions of users. Many such networks publicly release structural information, with all personal information removed. Empirical studies have shown, however, that this provides a false sense of privacy - it is possible to identify almost all users that appear in two such anonymized network as long as a few initial mappings are known. We analyze this problem theoretically by reconciling two versions of an artificial power-law network arising from independent subsampling of vertices and edges. We present a new algorithm that identifies most vertices and makes no wrong identifications with high probability. The number of vertices matched is shown to be asymptotically optimal. For an n-vertex graph, our algorithm uses \(n^\varepsilon\) seed nodes (for an arbitrarily small \(\varepsilon\)) and runs in quasilinear time. This improves previous theoretical results which need \(\Theta(n)\) seed nodes and have runtimes of order \(n^{1+\Omega(1)}\). Additionally, the applicability of our algorithm is studied experimentally on different networks.
Bläsius, Thomas; Friedrich, Tobias; Krohmer, Anton; Laue, Sören Efficient Embedding of Scale-Free Graphs in the Hyperbolic PlaneIEEE/ACM Transactions on Networking 2018: 920–933
Hyperbolic geometry appears to be intrinsic in many large real networks. We construct and implement a new maximum likelihood estimation algorithm that embeds scale-free graphs in the hyperbolic space. All previous approaches of similar embedding algorithms require at least a quadratic runtime. Our algorithm achieves quasilinear runtime, which makes it the first algorithm that can embed networks with hundreds of thousands of nodes in less than one hour. We demonstrate the performance of our algorithm on artificial and real networks. In all typical metrics, like Log-likelihood and greedy routing, our algorithm discovers embeddings that are very close to the ground truth.
Friedrich, Tobias; Krohmer, Anton On the diameter of hyperbolic random graphsSIAM Journal on Discrete Mathematics 2018: 1314–1334
Large real-world networks are typically scale-free. Recent research has shown that such graphs are described best in a geometric space. More precisely, the internet can be mapped to a hyperbolic space such that geometric greedy routing is close to optimal (Boguñá, Papadopoulos, and Krioukov. Nature Communications, 1:62, 2010). This observation has pushed the interest in hyperbolic networks as a natural model for scale-free networks. Hyperbolic random graphs follow a power law degree distribution with controllable exponent \(\beta\) and show high clustering (Gugelmann, Panagiotou, and Peter. ICALP, pp. 573–585, 2012). For understanding the structure of the resulting graphs and for analyzing the behavior of network algorithms, the next question is bounding the size of the diameter. The only known explicit bound is \(O(\)\((\log n)\)\(^{32/((3 - \beta)(5 - \beta))+1})\)(Kiwi and Mitsche. ANALCO, pp. 26–39, 2015). We present two much simpler proofs for an improved upper bound of \(O((\log n)\)\(^{2/(3 - \beta)})\) and a lower bound of \(\Omega(\log n)\). If \(\beta > 3\), we show that the latter bound is tight by proving an upper bound of \(O(\log n)\) for the diameter.
Friedrich, Tobias; Katzmann, Maximilian; Krohmer, Anton Unbounded Discrepancy of Deterministic Random Walks on GridsSIAM Journal on Discrete Mathematics 2018: 2441–2452
Random walks are frequently used in randomized algorithms. We study a derandomized variant of a random walk on graphs, called rotor-router model. In this model, instead of distributing tokens randomly, each vertex serves its neighbors in a fixed deterministic order. For most setups, both processes behave remarkably similar: Starting with the same initial configuration, the number of tokens in the rotor-router model deviates only slightly from the expected number of tokens on the corresponding vertex in the random walk model. The maximal difference over all vertices and all times is called single vertex discrepancy. Cooper and Spencer (2006) showed that on \(\mathbb{Z}^{d}\) the single vertex discrepancy is only a constant \(c_d\). Other authors also determined the precise value of \(c_d\) for \(d=1,2\). All these results, however, assume that initially all tokens are only placed on one partition of the bipartite graph \(\mathbb{Z}^{d}\). We show that this assumption is crucial by proving that otherwise the single vertex discrepancy can become arbitrarily large. For all dimensions \(d\geq1\) and arbitrary discrepancies~\(\ell \geq 0\), we construct configurations that reach a discrepancy of at least \(\ell\).
Bläsius, Thomas; Friedrich, Tobias; Katzmann, Maximilian; Krohmer, Anton Hyperbolic Embeddings for Near-Optimal Greedy RoutingAlgorithm Engineering and Experiments (ALENEX) 2018: 199–208
Greedy routing computes paths between nodes in a network by successively moving to the neighbor closest to the target with respect to coordinates given by an embedding into some metric space. Its advantage is that only local information is used for routing decisions. We present different algorithms for generating graph embeddings into the hyperbolic plane that are well suited for greedy routing. In particular our embeddings guarantee that greedy routing always succeeds in reaching the target and we try to minimize the lengths of the resulting greedy paths. We evaluate our algorithm on multiple generated and real wold networks. For networks that are generally assumed to have a hidden underlying hyperbolic geometry, such as the Internet graph, we achieve near-optimal results, i.e., the resulting greedy paths are only slightly longer than the corresponding shortest paths. In the case of the Internet graph, they are only \(6\%\) longer when using our best algorithm, which greatly improves upon the previous best known embedding, whose creation required substantial manual intervention.
Bläsius, Thomas; Friedrich, Tobias; Katzmann, Maximilian; Krohmer, Anton; Striebel, Jonathan Towards a Systematic Evaluation of Generative Network ModelsWorkshop on Algorithms and Models for the Web Graph (WAW) 2018: 99–114
Generative graph models play an important role in network science. Unlike real-world networks, they are accessible for mathematical analysis and the number of available networks is not limited. The explanatory power of results on generative models, however, heavily depends on how realistic they are. We present a framework that allows for a systematic evaluation of generative network models. It is based on the question whether real-world networks can be distinguished from generated graphs with respect to certain graph parameters. As a proof of concept, we apply our framework to four popular random graph models (Erdős-Rényi, Barabási-Albert, Chung-Lu, and hyperbolic random graphs). Our experiments for example show that all four models are bad representations for Facebook's social networks, while Chung-Lu and hyperbolic random graphs are good representations for other networks, with different strengths and weaknesses.