Bläsius, Thomas; Friedrich, Tobias; Krejca, Martin S.; Molitor, Louise The Impact of Geometry on Monochrome Regions in the Flip Schelling ProcessComputational Geometry (CGTA) 2023: 101902
Schelling's classical segregation model gives a coherent explanation for the wide-spread phenomenon of residential segregation. We introduce an agent-based saturated open-city variant, the Flip Schelling Process (FSP), in which agents, placed on a graph, have one out of two types and, based on the predominant type in their neighborhood, decide whether to change their types; similar to a new agent arriving as soon as another agent leaves the vertex. We investigate the probability that an edge u,v is monochrome, i.e., that both vertices u and v have the same type in the FSP, and we provide a general framework for analyzing the influence of the underlying graph topology on residential segregation. In particular, for two adjacent vertices, we show that a highly decisive common neighborhood, i.e., a common neighborhood where the absolute value of the difference between the number of vertices with different types is high, supports segregation and, moreover, that large common neighborhoods are more decisive. As an application, we study the expected behavior of the FSP on two common random graph models with and without geometry: (1) For random geometric graphs, we show that the existence of an edge u,v makes a highly decisive common neighborhood for u and v more likely. Based on this, we prove the existence of a constant c>0 such that the expected fraction of monochrome edges after the FSP is at least 1/2+c. (2) For Erdős–Rényi graphs we show that large common neighborhoods are unlikely and that the expected fraction of monochrome edges after the FSP is at most 1/2+o(1). Our results indicate that the cluster structure of the underlying graph has a significant impact on the obtained segregation strength.
Böther, Maximilian; Schiller, Leon; Fischbeck, Philipp; Molitor, Louise; Krejca, Martin S.; Friedrich, Tobias Evolutionary Minimization of Traffic CongestionIEEE Transactions on Evolutionary Computation 2023: 1809–1821
Traffic congestion is a major issue that can be solved by suggesting drivers alternative routes they are willing to take. This concept has been formalized as a strategic routing problem in which a single alternative route is suggested to an existing one. We extend this formalization and introduce the Multiple-Routes problem, which is given a start and destination and aims at finding up to \(n\) different routes that the drivers strategically disperse over, minimizing the overall travel time of the system. Due to the NP-hard nature of the problem, we introduce the Multiple-Routes evolutionary algorithm (MREA) as a heuristic solver. We study several mutation and crossover operators and evaluate them on real-world data of Berlin, Germany. We find that a combination of all operators yields the best result, reducing the overall travel time by a factor between \(1.8\) and \(3\), in the median, compared to all drivers taking the fastest route. For the base case \(n = 2\), we compare our MREA to the highly tailored optimal solver by Bläsius et al. (ATMOS 2020), and show that, in the median, our approach finds solutions of quality at least \(99.69 \%\) of an optimal solution while only requiring \(40 \%\) of the time.
Friedrich, Tobias; Lenzner, Pascal; Molitor, Louise; Seifert, Lars Single-Peaked Jump Schelling GamesInternational Symposium on Algorithmic Game Theory (SAGT) 2023
Schelling games model the wide-spread phenomenon of residential segregation in metropolitan areas from a game-theoretic point of view. In these games agents of different types each strategically select a node on a given graph that models the residential area to maximize their individual utility. The latter solely depends on the types of the agents on neighboring nodes and it has been a standard assumption to consider utility functions that are monotone in the number of same-type neighbors. This simplifying assumption has recently been challenged since sociological poll results suggest that real-world agents actually favor diverse neighborhoods. We contribute to the recent endeavor of investigating residential segregation models with realistic agent behavior by studying Jump Schelling Games with agents having a single-peaked utility function. In such games, there are empty nodes in the graph and agents can strategically jump to such nodes to improve their utility. We investigate the existence of equilibria and show that they exist under specific conditions. Contrasting this, we prove that even on simple topologies like paths or rings such stable states are not guaranteed to exist. Regarding the game dynamics, we show that improving response cycles exist independently of the position of the peak in the utility function. Moreover, we show high almost tight bounds on the Price of Anarchy and the Price of Stability with respect to the recently proposed degree of integration, which counts the number of agents with a diverse neighborhood and which serves as a proxy for measuring the segregation strength. Last but not least, we show that computing a beneficial state with high integration is NP-complete and, as a novel conceptual contribution, we also show that it is NP-hard to decide if an equilibrium state can be found via improving response dynamics starting from a given initial state.
Friedrich, Tobias; Lenzner, Pascal; Molitor, Louise; Seifert, Lars Single-Peaked Jump Schelling GamesAutonomous Agents and Multiagent Systems (AAMAS) 2023: 2899–2901
Schelling games model the wide-spread phenomenon of residential segregation in metropolitan areas from a game-theoretic point of view. In these games agents of different types each strategically select a node on a given graph that models the residential area to maximize their individual utility. The latter solely depends on the types of the agents on neighboring nodes and it has been a standard assumption to consider utility functions that are monotone in the number of same-type neighbors. This simplifying assumption has recently been challenged since sociological poll results suggest that real-world agents actually favor diverse neighborhoods. We contribute to the recent endeavor of investigating residential segregation models with realistic agent behavior by studying Jump Schelling Games with agents having a single-peaked utility function. In such games, there are empty nodes in the graph and agents can strategically jump to such nodes to improve their utility. We investigate the existence of equilibria and show that they exist under specific conditions. Contrasting this, we prove that even on simple topologies like paths or rings such stable states are not guaranteed to exist. Regarding the game dynamics, we show that improving response cycles exist independently of the position of the peak in the utility function. Moreover, we show high almost tight bounds on the Price of Anarchy and the Price of Stability with respect to the recently proposed degree of integration, which counts the number of agents with a diverse neighborhood and which serves as a proxy for measuring the segregation strength. Last but not least, we show that computing a beneficial state with high integration is NP-complete and, as a novel conceptual contribution, we also show that it is NP-hard to decide if an equilibrium state can be found via improving response dynamics starting from a given initial state.
Bilò, Davide; Bilò, Vittorio; Döring, Michelle; Lenzner, Pascal; Molitor, Louise; Schmidt, Jonas Schelling Games with Continuous TypesInternational Joint Conference on Artificial Intelligence (IJCAI) 2023: 2520–2527
In most major cities and urban areas, residents form homogeneous neighborhoods along ethnic or socioeconomic lines. This phenomenon is widely known as residential segregation and has been studied extensively. Fifty years ago, Schelling proposed a landmark model that explains residential segregation in an elegant agent-based way. A recent stream of papers analyzed Schelling’s model using game-theoretic approaches. However, all these works considered models with a given number of discrete types modeling different ethnic groups. We focus on segregation caused by non-categorical attributes, such as household income or position in a political left-right spectrum. For this, we consider agent types that can be represented as real numbers. This opens up a great variety of reasonable models and, as a proof of concept, we focus on several natural candidates. In particular, we consider agents that evaluate their location by the average type-difference or the maximum type-difference to their neighbors, or by having a certain tolerance range for type-values of neighboring agents. We study the existence and computation of equilibria and provide bounds on the Price of Anarchy and Stability. Also, we present simulation results that compare our models and shed light on the obtained equilibria for our variants.