Friedrich, Tobias; Rothenberger, Ralf Sharpness of the Satisfiability Threshold for Non-Uniform Random \(k\)-SAT.International Joint Conference on Artificial Intelligence (IJCAI) 2019: 6151–6155
We study non-uniform random k-SAT on n variables with an arbitrary probability distribution p on the variable occurrences. The number \(t = t(n)\) of randomly drawn clauses at which random formulas go from asymptotically almost surely (a.a.s.) satisfiable to a.a.s. unsatisfiable is called the satisfiability threshold. Such a threshold is called sharp if it approaches a step function as n increases. We show that a threshold t(n) for random k-SAT with an ensemble \((p_n)_{n\in\mathbb{N}}\) of arbitrary probability distributions on the variable occurrences is sharp if \(\|p\|_2^2 = O_n(t^{-2/k})\) and \(\|p\|_\infty\) \(= o_n(t^{-k/(2k-1)} \log^{-(k-1)/(2k-1)}(t))\). This result generalizes Friedgut’s sharpness result from uniform to non-uniform random k-SAT and implies sharpness for thresholds of a wide range of random k-SAT models with heterogeneous probability distributions, for example such models where the variable probabilities follow a power-law distribution.
Friedrich, Tobias; Rothenberger, Ralf The Satisfiability Threshold for Non-Uniform Random 2-SATInternational Colloquium on Automata, Languages and Programming (ICALP) 2019: 61:1–61:14
Propositional satisfiability (SAT) is one of the most fundamental problems in computer science. Its worst-case hardness lies at the core of computational complexity theory, for example in the form of NP-hardness and the (Strong) Exponential Time Hypothesis. In practice however, SAT instances can often be solved efficiently. This contradicting behavior has spawned interest in the average-case analysis of SAT and has triggered the development of sophisticated rigorous and non-rigorous techniques for analyzing random structures. Despite a long line of research and substantial progress, most theoretical work on random SAT assumes a uniform distribution on the variables. In contrast, real-world instances often exhibit large fluctuations in variable occurrence. This can be modeled by a non-uniform distribution of the variables, which can result in distributions closer to industrial SAT instances. We study satisfiability thresholds of non-uniform random 2-SAT with n variables and m clauses and with an arbitrary probability distribution \((p_i)_{i \in [n]}\) with \(p_1 \ge p_2 \ge \dots \ge p_n > 0\) over the n variables. We show for \(p_1^2 = \Theta(\sum_{i=1}^n p_i^2)\) that the asymptotic satisfiability threshold is at \(m = \Theta((1− \sum_{i=1}^n p_i^2) / \)\((p_1 (\sum_{i=2}^n p_i^2)^{1/2}))\) and that it is coarse. For \(p_1^2 = o( \sum_{i=1}^n p_i^2)\) we show that there is a sharp satisfiability threshold at \(m = (\sum_{i=1}^n p_i^2)^{−1}\). This result generalizes the seminal works by Chvatal and Reed [FOCS 1992] and by Goerdt [JCSS 1996].
Bläsius, Thomas; Friedrich, Tobias; Sutton, Andrew M. On the Empirical Time Complexity of Scale-Free 3-SAT at the Phase TransitionTools and Algorithms for the Construction and Analysis of Systems (TACAS) 2019: 117–134
The hardness of formulas at the solubility phase transition of random propositional satisfiability (SAT) has been intensely studied for decades both empirically and theoretically. Solvers based on stochastic local search (SLS) appear to scale very well at the critical threshold, while complete backtracking solvers exhibit exponential scaling. On industrial SAT instances, this phenomenon is inverted: backtracking solvers can tackle large industrial problems, where SLS-based solvers appear to stall. Industrial instances exhibit sharply different structure than uniform random instances. Among many other properties, they are often heterogeneous in the sense that some variables appear in many while others appear in only few clauses. We conjecture that the heterogeneity of SAT formulas alone already contributes to the trade-off in performance between SLS solvers and complete backtracking solvers. We empirically determine how the run time of SLS vs. backtracking solvers depends on the heterogeneity of the input, which is controlled by drawing variables according to a scale-free distribution. Our experiments reveal that the efficiency of complete solvers at the phase transition is strongly related to the heterogeneity of the degree distribution. We report results that suggest the depth of satisfying assignments in complete search trees is influenced by the level of heterogeneity as measured by a power-law exponent. We also find that incomplete SLS solvers, which scale well on uniform instances, are not affected by heterogeneity. The main contribution of this paper utilizes the scale-free random 3-SAT model to isolate heterogeneity as an important factor in the scaling discrepancy between complete and SLS solvers at the uniform phase transition found in previous works.
Friedrich, Tobias; Rothenberger, Ralf Sharpness of the Satisfiability Threshold for Non-Uniform Random k-SATTheory and Applications of Satisfiability Testing (SAT) 2018: 273–291
Best Paper Award
We study non-uniform random k-SAT on n variables with an arbitrary probability distribution p on the variable occurrences. The number \(t = t(n)\) of randomly drawn clauses at which random formulas go from asymptotically almost surely (a.a.s.) satisfiable to a.a.s. unsatisfiable is called the satisfiability threshold. Such a threshold is called sharp if it approaches a step function as n increases. We show that a threshold t(n) for random k-SAT with an ensemble \((p_n)_{n\in\mathbb{N}}\) of arbitrary probability distributions on the variable occurrences is sharp if \(\|p\|_2^2 = O_n(t^{-2/k})\) and \(\|p\|_\infty\) \(= o_n(t^{-k/(2k-1)} \log^{-(k-1)/(2k-1)}(t))\). This result generalizes Friedgut’s sharpness result from uniform to non-uniform random k-SAT and implies sharpness for thresholds of a wide range of random k-SAT models with heterogeneous probability distributions, for example such models where the variable probabilities follow a power-law distribution.
Friedrich, Tobias; Krohmer, Anton; Rothenberger, Ralf; Sauerwald, Thomas; Sutton, Andrew M. Bounds on the Satisfiability Threshold for Power Law Distributed Random SATEuropean Symposium on Algorithms (ESA) 2017: 37:1–37:15
Propositional satisfiability (SAT) is one of the most fundamental problems in computer science. The worst-case hardness of SAT lies at the core of computational complexity theory. The average-case analysis of SAT has triggered the development of sophisticated rigorous and non-rigorous techniques for analyzing random structures. Despite a long line of research and substantial progress, nearly all theoretical work on random SAT assumes a uniform distribution on the variables. In contrast, real-world instances often exhibit large fluctuations in variable occurrence. This can be modeled by a scale-free distribution of the variables, which results in distributions closer to industrial SAT instances. We study random \(k\)-SAT on \(n\) variables, \(m=\Theta(n)\) clauses, and a power law distribution on the variable occurrences with exponent \(\beta\). We observe a satisfiability threshold at \(\beta=(2k-1)/(k-1)\). This threshold is tight in the sense that instances with \( \beta\) \(< (2k-1)/(k-1)-\varepsilon\) for any constant \(\varepsilon>0\) are unsatisfiable with high probability (w.h.p.). For \(\beta\ge(2k-1)/(k-1)+\varepsilon\), the picture is reminiscent of the uniform case: instances are satisfiable w.h.p. for sufficiently small constant clause-variable ratios \(m/n\); they are unsatisfiable above a ratio \(m/n\) that depends on \(\beta\).
Friedrich, Tobias; Krohmer, Anton; Rothenberger, Ralf; Sutton, Andrew M. Phase Transitions for Scale-Free SAT FormulasConference on Artificial Intelligence (AAAI) 2017: 3893–3899
Recently, a number of non-uniform random satisfiability models have been proposed that are closer to practical satisfiability problems in some characteristics. In contrast to uniform random Boolean formulas, scale-free formulas have a variable occurrence distribution that follows a power law. It has been conjectured that such a distribution is a more accurate model for some industrial instances than the uniform random model. Though it seems that there is already an awareness of a threshold phenomenon in such models, there is still a complete picture lacking. In contrast to the uniform model, the critical density threshold does not lie at a single point, but instead exhibits a functional dependency on the power-law exponent. For scale-free formulas with clauses of length \(k = 2\), we give a lower bound on the phase transition threshold as a function of the scaling parameter. We also perform computational studies that suggest our bound is tight and investigate the critical density for formulas with higher clause lengths. Similar to the uniform model, on formulas with \(k \geq 3\), we find that the phase transition regime corresponds to a set of formulas that are difficult to solve by backtracking search.