Choosing the Appropriate QRS Detector. Eilers, Justus; Chromik, Jonas; Arnrich, Bert (2021). (Vol. 14)
QRS detectors are used as the most basic processing tool for ECG signals. Thus, there are many situations and signals with a wide range of characteristics in which they shall show great performance. Despite the expected versatility, most of the published QRS detectors are not tested on a diverse dataset. Using 14 databases, 10,000 heartbeats for each different heartbeat type were extracted to show that there are notable performance differences for the tested eight algorithms. Besides the analysis on heartbeat types, this paper also tests the noise resilience regarding different noise combinations. Each of the tested QRS detectors showed significant differences depending on heartbeat type and noise combination. This leads to the conclusion that before choosing a QRS detector, one should consider its use case and test the detector on data representing it. For authors of QRS detectors, this means that every algorithm evaluation should employ a dataset that is as diverse as the one used in this paper to assess the QRS detector’s performance in an objective and unbiased manner.
Certainty in QRS detection with artificial neural networks. Chromik, Jonas; Pirl, Lukas; Beilharz, Jossekin; Arnrich, Bert; Polze, Andreas in Biomedical Signal Processing and Control (2021). 68 102628.
Detection of the QRS complex is a long-standing topic in the context of electrocardiography and many algorithms build upon the knowledge of the QRS positions. Although the first solutions to this problem were proposed in the 1970s and 1980s, there is still potential for improvements. Advancements in neural network technology made in recent years also lead to the emergence of enhanced QRS detectors based on artificial neural networks. In this work, we propose a method for assessing the certainty that is in each of the detected QRS complexes, i.e. how confident the QRS detector is that there is, in fact, a QRS complex in the position where it was detected. We further show how this metric can be utilised to distinguish correctly detected QRS complexes from false detections.
Data Augmentation of Kinematic Time-Series From Rehabilitation Exercises Using GANs. Albert, Justin; Glöckner, Pawel; Pfitzner, Bjarne; Arnrich, Bert (2021). 1–6.
Machine learning, especially deep learning, offers great potential for medical applications. However, deep learning algorithms need a vast amount of training data. Especially in the medical domain, it is challenging to collect larger datasets. Access to patients can be limited, and data recording is mainly bound to laboratory settings requiring expertise from medical professionals. When involving a healthy control group, datasets are often unbalanced, with most data belonging to the control group. This paper proposes a data augmentation method to generate pose data of repetitive rehabilitation exercises trained on a specific population, e.g., a specific neurological disease. Our method is based on a generative adversarial network (GAN) that uses convolutional and long short-term memory (LSTM) layers. We evaluated our method using a dataset that contains rehabilitation exercises from stroke and Parkinson’s disease patients and a healthy control group. We demonstrated that a classifier trained using our augmentation method could distinguish between healthy, stroke, and Parkinson’s disease patients with an accuracy of 81%. In contrast, the same classifier achieved only 75% when using a standard resampling technique.
Differentially Private Federated Learning for Anomaly Detection in EHealth Networks. Cholakoska, Ana; Pfitzner, Bjarne; Gjoreski, Hristijan; Rakovic, Valentin; Arnrich, Bert; Kalendar, Marija in UbiComp ’21 (2021). 514–518.
Increasing number of ubiquitous devices are being used in the medical field to collect patient information. Those connected sensors can potentially be exploited by third parties who want to misuse personal information and compromise the security, which could ultimately result even in patient death. This paper addresses the security concerns in eHealth networks and suggests a new approach to dealing with anomalies. In particular we propose a concept for safe in-hospital learning from internet of health things (IoHT) device data while securing the network traffic with a collaboratively trained anomaly detection system using federated learning. That way, real time traffic anomaly detection is achieved, while maintaining collaboration between hospitals and keeping local data secure and private. Since not only the network metadata, but also the actual medical data is relevant to anomaly detection, we propose to use differential privacy (DP) for providing formal guarantees of the privacy spending accumulated during the federated learning.
Impact of Custom Features of Do-it-yourself Artificial Pancreas Systems (DIYAPS) on Glycemic Outcomes of People with Type 1 Diabetes. Staszak, Wiktoria; Chromik, Jonas; Braune, Katarina; Arnrich, Bert (2021). 1472–1475.
Sensor-Based Obsessive-Compulsive Disorder Detection With Personalised Federated Learning. Kirsten, Kristina; Pfitzner, Bjarne; Löper, Lando; Arnrich, Bert (2021). 333–339.
The mental illness Obsessive-Compulsive Disorder (OCD) is characterised by obsessive thoughts and compulsive actions. The latter can occur as repetitive activities to ensure that severe fears do not come true. A diagnosis of the disease is usually very late due to a lack of knowledge and shame of the patient. Nevertheless, early detection can significantly increase the success of therapy. With the development of new wearable sensors, it is possible to recognise human activities. Accordingly, wearables can also be used to identify recurring activities that indicate an OCD. Through this form of an automatic detection system, a diagnosis can be made earlier and thus therapy can be started sooner. Since compulsive behaviour is very individual and varies from patient to patient, this paper deals with personalised federated machine learning models. We first adapt the publicly available OPPORTUNITY dataset to simulate OCD behaviour. Secondly, we evaluate two existing personalised federated learning algorithms against baseline approaches. Finally, we propose a hybrid approach that merges the two evaluated algorithms and reaches a mean area under the precision-recall curve (AUPRC) of 0.954 across clients.
Optimal Deployment in Emergency Medicine with Genetic Algorithm Exemplified by Lifeguard Assignments*. Chromik, Jonas; Arnrich, Bert (2021). 1806–1809.
Perioperative Risk Assessment in Pancreatic Surgery Using Machine Learning. Pfitzner, Bjarne; Chromik, Jonas; Brabender, Rachel; Fischer, Eric; Kromer, Alexander; Winter, Axel; Moosburner, Simon; Sauer, Igor M.; Malinka, Thomas; Pratschke, Johann; Arnrich, Bert; Maurer, Max M. (2021). 2211–2214.
Pancreatic surgery is associated with a high risk for postoperative complications and death of patients. Complications occur in a variable interval after the procedure. Often, a patient has already left the ICU and is not properly monitored anymore when the complication occurs. Risk stratification models can assist in identifying patients at risk in order to keep these patients in ICU for longer. This, in turn, helps to identify complications earlier and increase survival rates. We trained multiple machine learning models on pre-, intra- and short term postoperative data from patients who underwent pancreatic resection at the Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin. The presented models achieve an area under the precision-recall curve (AUPRC) of up to 0.51 for predicting patient death and 0.53 for predicting a specific major complication. Overall, we found that a classical logistic regression model performs best for the investigated classification tasks. As more patient data becomes available throughout the perioperative stay, the performance of the risk stratification model improves and should therefore repeatedly be computed.
Implicit Model Specialization through Dag-Based Decentralized Federated Learning. Beilharz, Jossekin; Pfitzner, Bjarne; Schmid, Robert; Geppert, Paul; Arnrich, Bert; Polze, Andreas in Middleware ’21 (2021). 310–322.
Federated learning allows a group of distributed clients to train a common machine learning model on private data. The exchange of model updates is managed either by a central entity or in a decentralized way, e.g. by a blockchain. However, the strong generalization across all clients makes these approaches unsuited for non-independent and identically distributed (non-IID) data.We propose a unified approach to decentralization and personalization in federated learning that is based on a directed acyclic graph (DAG) of model updates. Instead of training a single global model, clients specialize on their local data while using the model updates from other clients dependent on the similarity of their respective data. This specialization implicitly emerges from the DAG-based communication and selection of model updates. Thus, we enable the evolution of specialized models, which focus on a subset of the data and therefore cover non-IID data better than federated learning in a centralized or blockchain-based setup.To the best of our knowledge, the proposed solution is the first to unite personalization and poisoning robustness in fully decentralized federated learning. Our evaluation shows that the specialization of models emerges directly from the DAG-based communication of model updates on three different datasets. Furthermore, we show stable model accuracy and less variance across clients when compared to federated averaging.