ARTEMIS: An Alarm Threshold and Policy Mining System for the Intensive Care Unit. Chromik, Jonas; Flint, Anne Rike; Arnrich, Bert in International Journal of Medical Informatics (2024). 105349.
Alarm fatigue is a major technology-induced hazard for patients and staff in intensive care units. Too many – mostly unnecessary – alarms cause desensitisation and lack of response in medical staff. Unsuitable alarm policies are one reason for alarm fatigue. But changing alarm policies is a delicate issue since it concerns patient safety. We present ARTEMIS, a novel, computer-aided clinical decision support system for policy makers that can help to considerably improve alarm policies using data from hospital information systems. Policy makers can use different policy components from ARTEMIS' internal library to assemble tailor-made alarm policies for their intensive care units. Alternatively, policy makers can provide even more highly customised policy components as Python functions using data the hospital information systems. This can even include machine learning models – for example for setting alarm thresholds. Finally, policy makers can evaluate their system of policies and compare the resulting alarm loads. ARTEMIS reports and compares numbers of alarms caused by different alarm policies for an easily adaptable target population. ARTEMIS can compare policies side-by-side and provides grid comparisons and heat maps for parameter optimisation. For example, we found that the utility of alarm delays varies based on target population. Furthermore, policy makers can introduce virtual parameters that are not in the original data by providing a formula to compute them. Virtual parameters help measuring and alarming on the right metric, even if the patient monitors do not directly measure this metric. ARTEMIS does not release the policy maker from assessing the policy from a medical standpoint. But as a knowledge discovery and clinical decision support system, it provides a strong quantitative foundation for medical decisions. At comparatively low cost of implementation, ARTEMIS can have a substantial impact on patients and staff alike – with organisational, economic, and clinical benefits for the implementing hospital.
Recommender System for Alarm Thresholds in Medical Patient Monitors. Schmidt, Denise; Chromik, Jonas; Arnrich, Bert (2023). 74–85.
Predictive Alarm Prevention by Forecasting Threshold Alarms at the Intensive Care Unit. Chromik, Jonas; Pfitzner, Bjarne; Ihde, Nina; Michaelis, Marius; Schmidt, Denise; Klopfenstein, Sophie Anne Ines; Poncette, Akira-Sebastian; Balzer, Felix; Arnrich, Bert in Biomedical Engineering Systems and Technologies, A. C. A. Roque, D. Gracanin, R. Lorenz, A. Tsanas, N. Bier, A. Fred, H. Gamboa (reds.) (2023). (Vol. 1814) 215–236.
Computational Approaches to Alleviate Alarm Fatigue in Intensive Care Medicine: A Systematic Literature Review. Chromik, Jonas; Klopfenstein, Sophie Anne Ines; Pfitzner, Bjarne; Sinno, Zeena-Carola; Arnrich, Bert; Balzer, Felix; Poncette, Akira-Sebastian in Frontiers in Digital Health (2022). 4
Patient monitoring technology has been used to guide therapy and alert staff when a vital sign leaves a predefined range in the intensive care unit (ICU) for decades. However, large amounts of technically false or clinically irrelevant alarms provoke alarm fatigue in staff leading to desensitisation towards critical alarms. With this systematic review, we are following the Preferred Reporting Items for Systematic Reviews (PRISMA) checklist in order to summarise scientific efforts that aimed to develop IT systems to reduce alarm fatigue in ICUs. 69 peer-reviewed publications were included. The majority of publications targeted the avoidance of technically false alarms, while the remainder focused on prediction of patient deterioration or alarm presentation. The investigated alarm types were mostly associated with heart rate or arrhythmia, followed by arterial blood pressure, oxygen saturation, and respiratory rate. Most publications focused on the development of software solutions, some on wearables, smartphones, or headmounted displays for delivering alarms to staff. The most commonly used statistical models were tree-based. In conclusion, we found strong evidence that alarm fatigue can be alleviated by IT-based solutions. However, future efforts should focus more on the avoidance of clinically non-actionable alarms which could be accelerated by improving the data availability.
Forecasting Thresholds Alarms in Medical Patient Monitors using Time Series Models. Chromik., Jonas; Pfitzner., Bjarne; Ihde., Nina; Michaelis., Marius; Schmidt., Denise; Klopfenstein., Sophie; Poncette., Akira-Sebastian; Balzer., Felix; Arnrich., Bert (2022). 26–34.
Too many alarms are a persistent problem in today’s intensive care medicine leading to alarm desensitisation and alarm fatigue. This puts patients and staff at risk. We propose a forecasting strategy for threshold alarms in patient monitors in order to replace alarms that are actionable right now with scheduled tasks in an attempt to remove the urgency from the situation. Therefore, we employ both statistical and machine learning mod- els for time series forecasting and apply these models to vital parameter data such as blood pressure, heart rate, and oxygen saturation. The results are promising, although impaired by low and non-constant sampling frequencies of the time series data in use. The combination of a GRU model with medium-resampled data shows the best performance for most types of alarms. However, higher time resolution and constant sampling frequencies are needed in order to meaningfully evaluate our approach.
Extracting Alarm Events from the MIMIC-III Clinical Database. Chromik., Jonas; Pfitzner., Bjarne; Ihde., Nina; Michaelis., Marius; Schmidt., Denise; Klopfenstein., Sophie; Poncette., Akira-Sebastian; Balzer., Felix; Arnrich., Bert (2022). 328–335.
Lack of readily available data on ICU alarm events constitutes a major obstacle to alarm fatigue research. There are ICU databases available that aim to give a holistic picture of everything happening at the respective ICU. However, these databases do not contain data on alarm events. We utilise the vital parameters and alarm thresholds recorded in the MIMIC-III database in order to artificially extract alarm events from this database. Prior to that, we uncover, investigate, and mitigate inconsistencies we found in the data. The results of this work are an approach and an algorithm for cleaning the alarm data available in MIMIC-III and extract concrete alarm events from them. The data set generated by this algorithm is investigated in this work and can be used for further research into the problem of alarm fatigue.