Predictive Alarm Prevention by Forecasting Threshold Alarms at the Intensive Care Unit. Chromik, Jonas; Pfitzner, Bjarne; Ihde, Nina; Michaelis, Marius; Schmidt, Denise; Klopfenstein, Sophie Anne Ines; Poncette, Akira-Sebastian; Balzer, Felix; Arnrich, Bert in Biomedical Engineering Systems and Technologies, A. C. A. Roque, D. Gracanin, R. Lorenz, A. Tsanas, N. Bier, A. Fred, H. Gamboa (reds.) (2023). (Vol. 1814) 215–236.
Forecasting Thresholds Alarms in Medical Patient Monitors using Time Series Models. Chromik., Jonas; Pfitzner., Bjarne; Ihde., Nina; Michaelis., Marius; Schmidt., Denise; Klopfenstein., Sophie; Poncette., Akira-Sebastian; Balzer., Felix; Arnrich., Bert (2022). 26–34.
Too many alarms are a persistent problem in today’s intensive care medicine leading to alarm desensitisation and alarm fatigue. This puts patients and staff at risk. We propose a forecasting strategy for threshold alarms in patient monitors in order to replace alarms that are actionable right now with scheduled tasks in an attempt to remove the urgency from the situation. Therefore, we employ both statistical and machine learning mod- els for time series forecasting and apply these models to vital parameter data such as blood pressure, heart rate, and oxygen saturation. The results are promising, although impaired by low and non-constant sampling frequencies of the time series data in use. The combination of a GRU model with medium-resampled data shows the best performance for most types of alarms. However, higher time resolution and constant sampling frequencies are needed in order to meaningfully evaluate our approach.
Extracting Alarm Events from the MIMIC-III Clinical Database. Chromik., Jonas; Pfitzner., Bjarne; Ihde., Nina; Michaelis., Marius; Schmidt., Denise; Klopfenstein., Sophie; Poncette., Akira-Sebastian; Balzer., Felix; Arnrich., Bert (2022). 328–335.
Lack of readily available data on ICU alarm events constitutes a major obstacle to alarm fatigue research. There are ICU databases available that aim to give a holistic picture of everything happening at the respective ICU. However, these databases do not contain data on alarm events. We utilise the vital parameters and alarm thresholds recorded in the MIMIC-III database in order to artificially extract alarm events from this database. Prior to that, we uncover, investigate, and mitigate inconsistencies we found in the data. The results of this work are an approach and an algorithm for cleaning the alarm data available in MIMIC-III and extract concrete alarm events from them. The data set generated by this algorithm is investigated in this work and can be used for further research into the problem of alarm fatigue.