
Dang, DucCuong; Lehre, Per Kristian; Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Oliveto, Pietro S.; Sudholt, Dirk; Sutton, Andrew M. Emergence of Diversity and its Benefits for Crossover in Genetic Algorithms. Parallel Problem Solving From Nature (PPSN) 2016: 890900
Population diversity is essential for avoiding premature convergence in Genetic Algorithms (GAs) and for the effective use of crossover. Yet the dynamics of how diversity emerges in populations are not well understood. We use rigorous runtime analysis to gain insight into population dynamics and GA performance for a standard \((\mu+1)\) GA and the \(Jump_k\) test function. By studying the stochastic process underlying the size of the largest collection of identical genotypes we show that the interplay of crossover followed by mutation may serve as a catalyst leading to a sudden burst of diversity. This leads to improvements of the expected optimisation time of order \(\Omega(n/ \log n)\) compared to mutationonly algorithms like the \((1+1)\) EA.

Dang, DucCuong; Friedrich, Tobias; Krejca, Martin S.; Kötzing, Timo; Lehre, Per Kristian; Oliveto, Pietro S.; Sudholt, Dirk; Sutton, Andrew Michael Escaping Local Optima with Diversity Mechanisms and Crossover. Genetic and Evolutionary Computation Conference (GECCO) 2016: 645652
Population diversity is essential for the effective use of any crossover operator. We compare seven commonly used diversity mechanisms and prove rigorous run time bounds for the \((\mu+1)\) GA using uniform crossover on the fitness function \(Jump_k\). All previous results in this context only hold for unrealistically low crossover probability \(p_c=O(k/n)\), while we give analyses for the setting of constant \(p_c < 1\) in all but one case. Our bounds show a dependence on the problem size \(n\), the jump length \(k\), the population size \(\mu\), and the crossover probability \(p_c\). For the typical case of constant \(k > 2\) and constant \(p_c\), we can compare the resulting expected optimisation times for different diversity mechanisms assuming an optimal choice of \(\mu\): \(O(n^{k1})\) for duplicate elimination/minimisation, \(O(n^2 \log n)\) for maximising the convex hull, \(O(n \log n)\) for det. crowding (assuming \(p_c = k/n\)), \(O(n \log n)\) for maximising the Hamming distance, \(O(n \log n)\) for fitness sharing, \(O(n \log n)\) for the singlereceiver island model. This proves a sizeable advantage of all variants of the \((\mu+1)\) GA compared to the (1+1) EA, which requires \(\Theta(n^k)\). In a short empirical study we confirm that the asymptotic differences can also be observed experimentally.

Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Sutton, Andrew M. The Benefit of Recombination in Noisy Evolutionary Search. Genetic and Evolutionary Computation Conference (GECCO) 2016: 161162
Practical optimization problems frequently include uncertainty about the quality measure, for example due to noisy evaluations. Thus, they do not allow for a straightforward application of traditional optimization techniques. In these settings, randomized search heuristics such as evolutionary algorithms are a popular choice because they are often assumed to exhibit some kind of resistance to noise. Empirical evidence suggests that some algorithms, such as estimation of distribution algorithms (EDAs) are robust against a scaling of the noise intensity, even without resorting to explicit noisehandling techniques such as resampling. In this paper, we want to support such claims with mathematical rigor. We introduce the concept of graceful scaling in which the run time of an algorithm scales polynomially with noise intensity. We study a monotone fitness function over binary strings with additive noise taken from a Gaussian distribution. We show that myopic heuristics cannot efficiently optimize the function under arbitrarily intense noise without any explicit noisehandling. Furthermore, we prove that using a population does not help. Finally we show that a simple EDA called the Compact Genetic Algorithm can overcome the shortsightedness of mutationonly heuristics to scale gracefully with noise. We conjecture that recombinative genetic algorithms also have this property.

Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Nallaperuma, Samadhi; Neumann, Frank; Schirneck, Martin Fast Building Block Assembly by Majority Vote Crossover. Genetic and Evolutionary Computation Conference (GECCO) 2016: 661668
Different works have shown how crossover can help with building block assembly. Typically, crossover might get lucky to select good building blocks from each parent, but these lucky choices are usually rare. In this work we consider a crossover operator which works on three parent individuals. In each component, the offspring inherits the value present in the majority of the parents; thus, we call this crossover operator majority vote. We show that, if good components are sufficiently prevalent in the individuals, majority vote creates an optimal individual with high probability. Furthermore, we show that this process can be amplified: as long as components are good independently and with probability at least \(1/2+\delta\), we require only \(O(\log 1/\delta + \log \log n)\) successive stages of majority vote to create an optimal individual with high probability! We show how this applies in two scenarios. The first scenario is the Jump test function. With sufficient diversity, we get an optimization time of \(O(n \log n)\) even for jump sizes as large as \(O(n^(1/2\epsilon)})\). Our second scenario is a family of vertex cover instances. Majority vote optimizes this family efficiently, while local searches fail and only highly specialized twoparent crossovers are successful.

Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Sutton, Andrew M. Graceful Scaling on Uniform versus SteepTailed Noise. Parallel Problem Solving From Nature (PPSN) 2016: 761770
Recently, different evolutionary algorithms (EAs) have been analyzed in noisy environments. The most frequently used noise model for this was additive posterior noise (noise added after the fitness evaluation) taken from a Gaussian distribution. In particular, for this setting it was shown that the \((\mu + 1)\)EA on OneMax does not scale gracefully (higher noise cannot efficiently be compensated by higher \(\mu\)). In this paper we want to understand whether there is anything special about the Gaussian distribution which makes the \((\mu + 1)\)EA not scale gracefully. We keep the setting of posterior noise, but we look at other distributions. We see that for exponential tails the \((\mu + 1)\)EA on OneMax does also not scale gracefully, for similar reasons as in the case of Gaussian noise. On the other hand, for uniform distributions (as well as other, similar distributions) we see that the \((\mu + 1)\)EA on OneMax does scale gracefully, indicating the importance of the noise model.

Arndt, Tobias; Hafner, Danijar; Kellermeier, Thomas; Krogmann, Simon; Razmjou, Armin; Krejca, Martin S.; Rothernberger, Ralf; Friedrich, Tobias Probabilistic Routing for OnStreet Parking Search. European Symposium on Algorithms (ESA) 2016: 6:16:13
An estimated \(30\%\) of urban traffic is caused by search for parking spots. Traffic could be reduced by suggesting effective routes leading along potential parking spots. In this paper, we formalize parking search as a probabilistic problem on a road graph and show that it is NPcomplete. We explore heuristics that optimize for the driving duration and the walking distance to the destination. Routes are constrained to reach a certain probability threshold of finding a spot. Empirically estimated probabilities of successful parking attempts are provided by TomTom on a perstreet basis. We release these probabilities as a dataset of about 80,000 roads covering the Berlin area. This allows to evaluate parking search algorithms on a real road network with realistic probabilities for the first time. However, for many other areas, parking probabilities are not openly available. Because they are effortful to collect, we propose an algorithm that relies on conventional road attributes only. Our experiments show that this algorithm comes close to the baseline by a factor of 1.3 in our cost measure. This leads to the conclusion that conventional road attributes may be sufficient to compute reasonably good parking search routes.

Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Sutton, Andrew M. Robustness of Ant Colony Optimization to Noise. Evolutionary Computation 2016: 237254
Recently Ant Colony Optimization (ACO) algorithms have been proven to be efficient in uncertain environments, such as noisy or dynamically changing fitness functions. Most of these analyses focus on combinatorial problems, such as path finding. We analyze an ACO algorithm in a setting where we try to optimize the simple OneMax test function, but with additive posterior noise sampled from a Gaussian distribution. Without noise the classical \((\mu+1)\)EA outperforms any ACO algorithm, with smaller \(\mu\) being better; however, with large noise, the \((\mu+1)\)EA fails, even for high values of \(\mu\) (which are known to help against small noise). In this paper we show that ACO is able to deal with arbitrarily large noise in a graceful manner, that is, as long as the evaporation factor \(p\) is small enough dependent on the parameter \(\delta^2\) of the noise and the dimension \(n\) of the search space \((p = o(1/(n(n + \delta łog n)^2 łog n)))\), optimization will be successful.

Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S. EDAs cannot be Balanced and Stable. Genetic and Evolutionary Computation Conference (GECCO) 2016: 11391146
Estimation of Distribution Algorithms (EDAs) work by iteratively updating a distribution over the search space with the help of samples from each iteration. Up to now, theoretical analyses of EDAs are scarce and present run time results for specific EDAs. We propose a new framework for EDAs that captures the idea of several known optimizers, including PBIL, UMDA, \(\lambda\)MMASIB, cGA, and \((1,\lambda)\)EA. Our focus is on analyzing two core features of EDAs: a balanced EDA is sensitive to signals in the fitness; a stable EDA remains uncommitted under a biasless fitness function. We prove that no EDA can be both balanced and stable. The LeadingOnes function is a prime example where, at the beginning of the optimization, the fitness function shows no bias for many bits. Since many wellknown EDAs are balanced and thus not stable, they are not wellsuited to optimize LeadingOnes. We give a stable EDA which optimizes LeadingOnes within a time of \(O(n log n)\).

Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Sutton, Andrew M. The Benefit of Recombination in Noisy Evolutionary Search. International Symposium of Algorithms and Computation (ISAAC) 2015: 140150
Practical optimization problems frequently include uncertainty about the quality measure, for example due to noisy evaluations. Thus, they do not allow for a straightforward application of traditional optimization techniques. In these settings metaheuristics are a popular choice for deriving good optimization algorithms, most notably evolutionary algorithms which mimic evolution in nature. Empirical evidence suggests that genetic recombination is useful in uncertain environments because it can stabilize a noisy fitness signal. With this paper we want to support this claim with mathematical rigor. The setting we consider is that of noisy optimization. We study a simple noisy fitness function that is derived by adding Gaussian noise to a monotone function. First, we show that a classical evolutionary algorithm that does not employ sexual recombination (the \((\mu+1)\)EA) cannot handle the noise efficiently, regardless of the population size. Then we show that an evolutionary algorithm which does employ sexual recombination (the Compact Genetic Algorithm, short: cGA) can handle the noise using a graceful scaling of the population.

Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Sutton, Andrew M. Robustness of Ant Colony Optimization to Noise. Genetic and Evolutionary Computation Conference (GECCO) 2015: 1724
Recently Ant Colony Optimization (ACO) algorithms have been proven to be efficient in uncertain environments, such as noisy or dynamically changing fitness functions. Most of these analyses focus on combinatorial problems, such as path finding. We analyze an ACO algorithm in a setting where we try to optimize the simple OneMax test function, but with additive posterior noise sampled from a Gaussian distribution. Without noise the classical \((\mu+1)\)EA outperforms any ACO algorithm, with smaller \(\mu\) being better; however, with large noise, the \((\mu+1)\)EA fails, even for high values of \(\mu\) (which are known to help against small noise). In this paper we show that ACO is able to deal with arbitrarily large noise in a graceful manner, that is, as long as the evaporation factor \(\mu\) is small enough dependent on the parameter \(\delta^2\) of the noise and the dimension \(n\) of the search space \((p = o(1/(n(n + \delta \log n)^2 \log n)))\), optimization will be successful.