Food Choices after Cognitive Load: An Affective Computing Approach. Kappattanavar, Arpita Mallikarjuna; Hecker, Pascal; Moontaha, Sidratul; Steckhan, Nico; Arnrich, Bert in Sensors (2023). 23(14)
Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications.
Weitere Informationen
AbstractPsychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications.
Wearable EEG-Based Cognitive Load Classification by Personalized and Generalized Model Using Brain Asymmetry. Moontaha, Sidratul; Kappattanavar, Arpita Mallikarjuna; Hecker, Pascal; Arnrich, Bert (2023).
EEG measures have become prominent with the increasing popularity of non-invasive, portable EEG sensors for neuro-physiological measures to assess cognitive load. In this paper, utilizing a four-channel wearable EEG device, the brain activity data from eleven participants were recorded while watching a relaxation video and performing three cognitive load tasks. The data was pre-processed using outlier rejection based on a movement filter, spectral filtering, common average referencing, and normalization. Four frequency-domain feature sets were extracted from 30-second windows encompassing the power of δ, θ, α, β and γ frequency bands, the respective ratios, and the asymmetry features of each band. A personalized and generalized model was built for the binary classification between the relaxation and cognitive load tasks and self-reported labels. The asymmetry feature set outperformed the band ratio feature sets with a mean classification accuracy of 81.7% for the personalized model and 78% for the generalized model. A similar result for the models from the self-reported labels necessitates utilizing asymmetry features for cognitive load classification. Extracting high-level features from asymmetry features in the future may surpass the performance. Moreover, the better performance of the personalized model leads to future work to update pre-trained generalized models on personal data.
Weitere Informationen
AbstractEEG measures have become prominent with the increasing popularity of non-invasive, portable EEG sensors for neuro-physiological measures to assess cognitive load. In this paper, utilizing a four-channel wearable EEG device, the brain activity data from eleven participants were recorded while watching a relaxation video and performing three cognitive load tasks. The data was pre-processed using outlier rejection based on a movement filter, spectral filtering, common average referencing, and normalization. Four frequency-domain feature sets were extracted from 30-second windows encompassing the power of δ, θ, α, β and γ frequency bands, the respective ratios, and the asymmetry features of each band. A personalized and generalized model was built for the binary classification between the relaxation and cognitive load tasks and self-reported labels. The asymmetry feature set outperformed the band ratio feature sets with a mean classification accuracy of 81.7% for the personalized model and 78% for the generalized model. A similar result for the models from the self-reported labels necessitates utilizing asymmetry features for cognitive load classification. Extracting high-level features from asymmetry features in the future may surpass the performance. Moreover, the better performance of the personalized model leads to future work to update pre-trained generalized models on personal data.
Online learning for wearable eeg-based emotion classification. Moontaha, Sidratul; Schumann, Franziska Elisabeth Friederike; Arnrich, Bert in Sensors (2023). 23(5) 2387.