Bläsius, Thomas; Cohen, Sarel; Fischbeck, Philipp; Friedrich, Tobias; Krejca, Martin S. Robust Parameter Fitting to Realistic Network Models via Iterative Stochastic ApproximationCoRR 2024
ArXiv preprint
Random graph models are widely used to understand network properties and graph algorithms. Key to such analyses are the different parameters of each model, which affect various network features, such as its size, clustering, or degree distribution. The exact effect of the parameters on these features is not well understood, mainly because we lack tools to thoroughly investigate this relation. Moreover, the parameters cannot be considered in isolation, as changing one affects multiple features. Existing approaches for finding the best model parameters of desired features, such as a grid search or estimating the parameter-feature relations, are not well suited, as they are inaccurate or computationally expensive. We introduce an efficient iterative fitting method, named ParFit, that finds parameters using only a few network samples, based on the Robbins-Monro algorithm. We test ParFit on three well-known graph models, namely Erdős-Rényi, Chung-Lu, and geometric inhomogeneous random graphs, as well as on real-world networks, including web networks. We find that ParFit performs well in terms of quality and running time across most parameter configurations.
Bläsius, Thomas; Fischbeck, Philipp On the External Validity of Average-Case Analyses of Graph AlgorithmsACM Transactions on Algorithms 2024
The number one criticism of average-case analysis is that we do not actually know the probability distribution of real-world inputs. Thus, analyzing an algorithm on some random model has no implications for practical performance. At its core, this criticism doubts the existence of external validity, i.e., it assumes that algorithmic behavior on the somewhat simple and clean models does not translate beyond the models to practical performance real-world input. With this paper, we provide a first step towards studying the question of external validity systematically. To this end, we evaluate the performance of six graph algorithms on a collection of 2740 sparse real-world networks depending on two properties; the heterogeneity (variance in the degree distribution) and locality (tendency of edges to connect vertices that are already close). We compare this with the performance on generated networks with varying locality and heterogeneity. We find that the performance in the idealized setting of network models translates surprisingly well to real-world networks. Moreover, heterogeneity and locality appear to be the core properties impacting the performance of many graph algorithms.
Böther, Maximilian; Schiller, Leon; Fischbeck, Philipp; Molitor, Louise; Krejca, Martin S.; Friedrich, Tobias Evolutionary Minimization of Traffic CongestionIEEE Transactions on Evolutionary Computation 2023: 1809–1821
Traffic congestion is a major issue that can be solved by suggesting drivers alternative routes they are willing to take. This concept has been formalized as a strategic routing problem in which a single alternative route is suggested to an existing one. We extend this formalization and introduce the Multiple-Routes problem, which is given a start and destination and aims at finding up to \(n\) different routes that the drivers strategically disperse over, minimizing the overall travel time of the system. Due to the NP-hard nature of the problem, we introduce the Multiple-Routes evolutionary algorithm (MREA) as a heuristic solver. We study several mutation and crossover operators and evaluate them on real-world data of Berlin, Germany. We find that a combination of all operators yields the best result, reducing the overall travel time by a factor between \(1.8\) and \(3\), in the median, compared to all drivers taking the fastest route. For the base case \(n = 2\), we compare our MREA to the highly tailored optimal solver by Bläsius et al. (ATMOS 2020), and show that, in the median, our approach finds solutions of quality at least \(99.69 \%\) of an optimal solution while only requiring \(40 \%\) of the time.
Bläsius, Thomas; Fischbeck, Philipp; Friedrich, Tobias; Katzmann, Maximilian Solving Vertex Cover in Polynomial Time on Hyperbolic Random GraphsTheory of Computing Systems 2023: 28–51
The computational complexity of the VertexCover problem has been studied extensively. Most notably, it is NP-complete to find an optimal solution and typically NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VertexCover is way smaller than even the best known FPT-approaches can explain. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice.
Casel, Katrin; Fischbeck, Philipp; Friedrich, Tobias; Göbel, Andreas; Lagodzinski, J. A. Gregor Zeros and approximations of Holant polynomials on the complex planeComputational Complexity 2022: 11
We present fully polynomial time approximation schemesfor a broad class of Holant problems with complex edge weights, which we call Holant polynomials. We transform these problems into partition functions of abstract combinatorial structures known as polymers in statistical physics. Our method involves establishing zero-free regions for the partition functions of polymer models and using the mostsignificant terms of the cluster expansion to approximate them. Results of our technique include new approximation and sampling algorithms for a diverse class of Holant polynomials in the low-temperature regime (i.e. small external field) and approximation algorithms for general Holant problems with small signature weights. Additionally, we give randomised approximation and sampling algorithms with faster running times for more restrictive classes. Finally, we improve the known zero-free regions for a perfect matching polynomial.
Doerr, Benjamin; Fischbeck, Philipp; Frahnow, Clemens; Friedrich, Tobias; Kötzing, Timo; Schirneck, Martin Island Models Meet Rumor SpreadingAlgorithmica 2019: 886–915
Island models in evolutionary computation solve problems by a careful interplay of independently running evolutionary algorithms on the island and an exchange of good solutions between the islands. In this work, we conduct rigorous run time analyses for such island models trying to simultaneously obtain good run times and low communication effort. We improve the existing upper bounds for both measures (i) by improving the run time bounds via a careful analysis, (ii) by balancing individual computation and communication in a more appropriate manner, and (iii) by replacing the usual communicate-with-all approach with randomized rumor spreading. In the latter, each island contacts a randomly chosen neighbor. This epidemic communication paradigm is known to lead to very fast and robust information dissemination in many applications. Our results concern island models running simple (1+1) evolutionary algorithms to optimize the classic test functions OneMax and LeadingOnes. We investigate binary trees, d-dimensional tori, and complete graphs as communication topologies.