Auditing medical AI algorithms in real-world healthcare application settings under the the lens of medical applicability, bias & fairness, external validity, transparency and trustworthiness
Fehr, J., Gunda, R., Siedner, M. J., Hanekom, W., Ndung´u, T., Grant, A., Lippert, C. & Wong, E. B. (2023). CAD4TB software updates: different triaging thresholds require caution by users and regulation by authorities. The International Journal of Tuberculosis and Lung Disease, 27(2), 157–160. https://doi.org/10.5588/IJTLD.22.0437
Fehr, J., Konigorski, S., Olivier, S., Gunda, R., Surujdeen, A., et al. Computer-aided interpretation of chest radiography reveals the spectrum of tuberculosis in rural South Africa. npj Digit. Med.4, 106 (2021). https://doi.org/10.1038/s41746-021-00471-y and medRxiv, doi: https://doi.org/10.1101/2020.09.04.20188045.
Fehr, J., Jaramillo-Gutierrez, G., Oala, L., Gröschel, M. I., Bierwirth, M., Balachandran, P., Werneck-Leite, A., & Lippert, C. Piloting A Survey-Based Assessment of Transparency and Trustworthiness with Three Medical AI Tools. Healthcare, 10(10) (2022). https://doi.org/10.3390/healthcare10101923
Fehr, J., Piccinnini, M., Kurth, T., Konigorski, S. A causal framework for assessing the transportability of clinical prediction models. medRxiv, doi: https://doi.org/10.1101/2022.03.01.22271617 (2022)
Oala, L., Fehr, J., Gilli, L., Calderon-ramirez, S., Li, D. X., et al. ML4H Auditing : From Paper to Practice. Proc. Mach. Learn. Res.136, 281–317, (2020).
Oala, L., Murchison, A. G., Balachandran, P., Choudhary, S., Fehr, J., et al. Machine Learning for Health : Algorithm Auditing & Quality Control. J. Med. Syst.45, 1–8, doi: 10.1007/s10916-021-01783-y (2021).
Fehr, J., Konigorski, S., and Lippert, C.. Data Science für Digitale Medizin - Buchkapitel in: Digitale Medizin – Kompendium für Studium und Praxis, Medizinisch Wissenschaftliche Verlagsgesellschaft Berlin, (2020); ISBN-10 3-95466-538-7, ISBN-13 978-3-95466-538-9