Interested in contributing to our work on personalizing health interventions? Then reach out to us!
Research Interests
N-of-1 trials, adaptive trials, and micro-randomized trials for personalizing health interventions
Reinforcement learning for sequential decision making in adaptive trials
Causal inference in estimation, hypothesis testing, and prediction models
Statistical and machine learning models of multi-modal health outcomes
Improve health powered by digital technologies and statistics, machine learning and causal inference
Experience
since July 2021: Adjunct Assistant Professor, Icahn School of Medicine at Mount Sinai, New York, USA
since April 2021: Senior Researcher, heading the Health Intervention Analytics Lab in the Digital Health & Machine Learning chair, Hasso Plattner Institute
July 2022 - February 2023: Visiting Faculty, Statistical Reinforcement Learning Lab, Department of Statistics, Harvard University, Cambridge, USA
2022 (3 months): Visiting Faculty, Department of Public Health Sciences, Seoul National University, Seoul, South Korea
2019-2021: Postdoc in Digital Health & Machine Learning Group, Hasso Plattner Institute
2018: Postdoc in Statistical Genomics Research Group, Max Delbrück Center for Molecular Medicine, Berlin
2013-2018: Research Associate in Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine, Berlin
2016 (3 months): Visiting Researcher in Department of Mathematics & Statistics, Memorial University of Newfoundland, St. John's, Canada
2012-2013: Research Associate at Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Canada
2011-2013: Research Associate in Statistical Genomics Laboratory, University of Toronto, Canada
Education
Dr. rer. nat. Computer Science, Humboldt University of Berlin (2018)
“Statistical data analysis using R” (2019-current)
“Molecular Epidemiology” (2016-2021)
“Statistical data analysis using SPSS” (2016-2018)
“Multilevel Modeling” (2016)
“SAS Programming” (2015-2018)
“Biostatistics I” (2015-2018)
Publications
Peer-reviewed journal articles
Lang A, Hohmuth N, Višković V, Konigorski S, Scholz S, Balzer F, Remschmidt C, Leistner R (2024). App-based collection of real-world data on the COVID-19 pandemic and vaccines in Germany (eCOV): Prospective observational cohort study. JMIR, in press.
Zhou T, Schneider J, Arnrich B, Konigorski S (2024). Analyzing population-level trials as N-of-1 trials: an application to gait. Contemporary Clinical Trials Communications 38: 101282.https://doi.org/10.1016/j.conctc.2024.101282
Laure T, RCME Engels, Remmerswaal D, Spruijt-Metz D, Konigorski S, Boffo M (2023). Optimization of a Transdiagnostic Mobile Emotion Regulation Intervention for University Students: Protocol for a Microrandomized Trial. JMIR Research Protocols 12: e46603. https://doi.org/10.2196/46603
Müller A, Konigorski S, Meißner C, Fadai T, Warren CV, Falkenberg I, Kircher T, Nestoriuc Y (2023). Study Protocol: Combined N-of-1 Trials to Assess Open-Label Placebo Treatment for Antidepressant Discontinuation Symptoms [FAB-study]. BMC Psychiatry23: 749. https://doi.org/10.1186/s12888-023-05184-y
Gärtner T, Schneider J, Arnrich B, Konigorski S (2023). Comparison of Bayesian Networks, G-estimation and linear models to estimate causal treatment effects in aggregated N-of-1 trials with carry-over effects. BMC Medical Research Methodology23:191. https://doi.org/10.1186/s12874-023-02012-5
Fehr J, Piccininni M, Kurth T, Konigorski S (2023). Assessing the transportability of clinical prediction models for cognitive impairment using causal models. BMC Medical Research Methodology23:187. https://doi.org/10.1186/s12874-023-02003-6
Ehrig L#, Wagner A#, Wolter H, Correll CU, Geisel O*, Konigorski S* (2023). FASDetect as a machine learning-based screening app for FASD in youth with ADHD. npj Digital Medicine6:130. https://doi.org/10.1038/s41746-023-00864-1
Konigorski S, Janke J, Patone G, Bergmann MM, Lippert C, Hübner N, Kaaks R, Boeing H, Pischon T (2022). Identification of novel genes whose expression in adipose tissue is causally associated with obesity traits. European Journal of Human Genetics.https://doi.org/10.1038/s41431-022-01161-3
Hohmuth N, Khanyaree I, Lang A, Duering O, Konigorski S, Višković V, Heising T, Egender F, Remschmidt C, Leistner R. (2022) Participatory disease surveillance for a mass gathering - a prospective cohort study on COVID-19, Germany 2021. BMC Public Health22: 2274. https://doi.org/10.1186/s12889-022-14505-x
Monti R, Rautenstrauch P, Ghanbari M, James AR, Kirchler M, Ohler U*, Konigorski S*, Lippert C* (2022). Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes. Nature Communications 13(5332). https://doi.org/10.1038/s41467-022-32864-2
Konigorski S, Wernicke S, Slosarek T, Zenner AM, Strelow N, Ruether FD, Henschel F, Manaswini M, Pottbäcker F, Edelman JA, Owoyele B, Danieletto M, Golden E, Zweig M, Nadkarni G, Böttinger E (2022). StudyU: a platform for designing and conducting innovative digital N-of-1 trials. J Med Internet Res 24(6): e35884. https://doi.org/10.2196/35884.
Kirchler M, Konigorski S, Norden M, Meltendorf C, Kloft M, Schurmann C, Lippert C (2022). transferGWAS: GWAS of images using deep transfer learning.Bioinformatics 38(14): 3621–3628. https://doi.org/10.1093/bioinformatics/btac369
Rübsamen N, Pape S, Konigorski S, Zapf A, Rücker G, Karch A (2022). Diagnostic accuracy of cerebrospinal fluid and blood biomarkers for the differential diagnosis of sporadic Creutzfeldt-Jakob disease in a specialized care setting: a systematic review and (network) meta-analysis. European Journal of Neurology 29: 1366– 1376. https://doi.org/10.1111/ene.15258
Wiemker V, Bunova A, Rastogi A, Neufeld M, Ferreira-Borges C, Konigorski S, Probst C (2022). Digital assessment tools using animation features to quantify alcohol consumption: a systematic review. J Med Internet Res 24(3): e28927. https://doi.org/10.2196/28927
Wiemker V, Bunova A, Neufeld M, Gornyi B, Yurasova E, Konigorski S, Kalinina A, Kontsevaya A, Ferreira-Borges C, Probst C (2022). Pilot study to evaluate usability and acceptability of the ‘Animated Alcohol Assessment Tool’ (AAA-Tool) in Russian primary healthcare. Digital Health 8: 1–11.https://doi.org/10.1177/20552076211074491
Klinger JE, Ravarani CHJ, Baukmann HA, Cope JL, Böttinger EP, Konigorski S, Schmidt MF (2021). Interaction-based feature selection algorithm outperforms polygenic risk score in predicting Parkinson’s Disease status. Frontiers in Genetics 12: 744557. https://doi.org/10.3389/fgene.2021.744557.
Fehr J, Konigorski S, Olivier S, et al. (2021). Computer-aided interpretation of chest radiography reveals the spectrum of tuberculosis in rural South Africa. npj Digital Medicine 4: 106.https://doi.org/10.1038/s41746-021-00471-y.
Rüdiger S, Konigorski S, Edelman J, Zernick D, Thieme A, Lippert C (2021). Predicting the SARS-CoV-2 effective reproduction number using bulk contact data from mobile phones. PNAS118(31):e2026731118. https://doi.org/10.1073/pnas.2026731118.
Sticht J, Álvaro-Benito M, KonigorskiS (2021). Type 1 diabetes and the HLA-region: Genetic association besides classical HLA class II genes in UK Biobank whole exome sequencing data. Frontiers in Genetics 12: 1044. https://doi.org/10.3389/fgene.2021.683946.
Konigorski S (2021). Causal inference in developmental medicine and neurology. Developmental Medicine & Child Neurology 63(5): 498. https://doi.org/10.1111/dmcn.14813.
Wilkinson J, Arnold K, Murray EJ, van Smeden M, Carr K, Sippy R, de Kamps M, Beam A, Konigorski S, Lippert C, Gilthorpe M, Tennant P (2020). It is time to reality check the promises of machine learning-powered precision medicine. The Lancet Digital Health 2: e677–80.https://doi.org/10.1016/S2589-7500(20)30200-4.
Piccininni M, Konigorski S, Rohmann JL, Kurth T (2020). Directed Acyclic Graphs and causal thinking in clinical risk prediction modeling. BMC Medical Research Methodology 20: 179. https://doi.org/10.1186/s12874-020-01058-z.
Konigorski S, Yilmaz YE, Janke J, Bergmann MM, Boeing H, Pischon T (2020). Powerful rare variant association testing in a copula-based joint analysis of multiple traits. Genetic Epidemiology 44: 26–40. https://doi.org/10.1002/gepi.22265.
Meier I, Schablon A, Nienhaus A, Konigorski S (2020). Latente Tuberkulose bei medizinischem Personal in Deutschland nach Auslandseinsatz [Latent tuberculosis infection among healthcare staff in Germany after assignments abroad]. Pneumologie 74: 1–7. https://doi.org/10.1055/a-1127-9537.
Konigorski S, Janke J, Drogan D, Bergmann MM, Hierholzer J, Kaaks R, Boeing H, Pischon T (2019). Prediction of circulating adipokine levels based on body fat compartments and adipose tissue gene expression. Obesity Facts 12: 590–605. https://doi.org/10.1159/000502117.
Romo Ventura E, Konigorski S, Rohrmann S, Schneider H, Stalla GK, Pischon T, Linseisen J, Nimptsch K (2019). Dietary intake of milk and dairy products and blood concentrations of insulin-like growth factor 1 (IGF-I). European Journal of Nutrition 59: 1413–1420. https://doi.org/10.1007/s00394-019-01994-7.
Nimptsch K, Konigorski S, Pischon T (2019). Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism: Clinical and Experimental 92: 61-70. https://doi.org/10.1016/j.metabol.2018.12.006.
Jaeschke L, Steinbrecher A, Jeran S, Konigorski S, Pischon T (2018). Variability and reliability study of overall physical activity and activity intensity levels using 24h-accelerometry-assessed data. BMC Public Health 18(1): 530.https://doi.org/10.1186/s12889-018-5415-8.
Konigorski S, Wang Y, Cigsar C, Yilmaz YE (2018). Estimating and testing direct genetic effects in directed acyclic graphs using estimating equations. Genetic Epidemiology42: 174–186. https://doi.org/10.1002/gepi.22107.
Konigorski S, Yilmaz YE, Pischon T (2017). Comparison of single-marker and multi-marker tests in rare variant association studies of quantitative traits. PLoS One 12(5): e0178504. https://doi.org/10.1371/journal.pone.0178504.
Schillert A*, Konigorski S* (2016). Joint analysis of multiple phenotypes - summary of results and discussions from the Genetic Analysis Workshop 19. BMC Genetics 17(Suppl 2): 7. (*contributed equally). https://doi.org/10.1186/s12863-015-0317-6.
Koch SC, Konigorski S, Sieverding M (2014). Sexist behavior undermines women’s performance in a job application situation. Sex Roles 70(3-4): 79-87. https://doi.org/10.1007/s11199-014-0342-3.
Peer-reviewed conference articles & contributions
Meier D, Ensari I, Konigorski S (2023). Designing and evaluating an online reinforcement learning agent for physical exercise recommendations in N-of-1 trials. Proceedings of Machine Learning Research 225:340–352.https://proceedings.mlr.press/v225/meier23a.html
Lang A, Višković V, Hohmuth N, Konigorski S, Leistner R, Remschmidt C (2023). App-based collection of real-world data on the covid-19 pandemic and vaccines in Germany 2021-2022. Population Medicine 5(Supplement):A454. https://doi.org/10.18332/popmed/164483. [Abstract]
Hellwig T, Lüders H, Konigorski S, Zaatar M, Kurz S, Liebers U, Grohé C (2023). Verbesserung des Gesamtüberlebens von Patienten mit NSCLC zwischen 1999 und 2017 – eine retrospektive monozentrische Kohortenstudie. Pneumologie 77(S1): S84. https://dx.doi.org/10.1055/s-0043-1761070. [Abstract]
Kirchler M, Konigorski S, Schurmann C, Norden M, Meltendorf C, Kloft M, Lippert C (2020). transferGWAS: GWAS of images using deep transfer learning. In: Machine Learning for Health (ML4H) Workshop at NeurIPS 2020 [Abstract]
Konigorski S, Monti R, Rautenstrauch P, Lippert C (2020). Fast kernel-based rare-variant association tests integrating variant annotations from deep learning. In: The 2020 Annual Meeting of the International Genetic Epidemiology Society. Genetic Epidemiology 44(5): 495. https://doi.org/10.1002/gepi.22298. [Abstract]
Konigorski S, Monti R, Lippert C (2019). Kernel-based tests integrating variant effect predictions from deep learning for genetic association tests of rare variants. https://dx.doi.org/10.3205/19gmds067. [Abstract]
Konigorski S, Khorasani S, Lippert C (2018). Integrating omics and MRI data with kernel-based tests and CNNs to identify rare genetic markers for Alzheimer’s disease. In: Machine Learning for Health (ML4H) Workshop at NeurIPS 2018, arXiv:1812.00448. https://arxiv.org/abs/1812.00448.
Konigorski S, Lippert C (2018). Kernel-based tests for very rare variants. In: The 2018 Annual Meeting of the International Genetic Epidemiology Society. Genetic Epidemiology 42(7): 711. https://doi.org/10.1002/gepi.22163. [Abstract]
Konigorski S, Janke J, Drogan D, et al. (2018). Prediction of circulating adipokine levels by body fat compartments and adipose tissue gene expression. Revue d'Épidémiologie et de Santé Publique 66(5): S353. https://doi.org/10.1016/j.respe.2018.05.318. [Abstract]
Konigorski S, Yilmaz YE, Pischon T (2016). Genetic association analysis based on a joint model of gene expression and blood pressure. BMC Proceedings 10(Suppl 7): 289-294. https://doi.org/10.1186/s12919-016-0045-6.
Konigorski S, Wang Y, Cigsar C, Yilmaz YE (2016). Estimating and testing direct genetic effects in directed acyclic graphs with multiple phenotypes using estimating equations. In: The 2016 Annual Meeting of the International Genetic Epidemiology Society. Genetic Epidemiology 40: 609–674. https://doi.org/10.1002/gepi.22001. [Abstract]
Konigorski S*, Yilmaz YE*, Bull SB (2014). Bivariate genetic association analysis of systolic and diastolic blood pressure by copula models.BMC Proceedings 8(Suppl 1): S72. (*contributed equally). https://doi.org/10.1186/1753-6561-8-S1-S72.
Konigorski S, Kustra R (2012). Sparse principal component regression as a tool to detect causal regions in genetic studies. In: Abstracts from the annual meeting of the International Genetic Epidemiology Society. Genetic Epidemiology 36: 720–777. https://doi.org/10.1002/gepi.21677. [Abstract]
Preprints
Vetter VM, Kurth T, Konigorski S (2024). Evaluation of easy-to-implement anti-stress interventions in a series of N-of-1 trials: Study protocol of the Anti-Stress Intervention Among Physicians Study (ASIP). medRxiv. https://www.medrxiv.org/content/10.1101/2024.04.22.24306161v1
Meier D, Ensari I, Konigorski S (2023). Designing and evaluating an online reinforcement learning agent for physical exercise recommendations in N-of-1 trials. arXiv.https://arxiv.org/abs/2309.14156
Malenica I, Guo Y, Gan K, Konigorski S (2023). Anytime-valid inference in N-of-1 trials. arXiv. https://arxiv.org/abs/2309.07353
Schneider J, Gärtner T, Konigorski S (2023). Multimodal outcomes in N-of-1 trials: combining unsupervised learning and statistical inference. arXiv. http://arxiv.org/abs/2309.06455
Lang A, Hohmuth N, Višković V, Konigorski S, Scholz S, Balzer F, Remlschmidt C, Leistner R (2023). App-based collection of real-world data on the COVID-19 pandemic and vaccines in Germany (eCOV): Prospective observational cohort study. https://doi.org/10.2196/preprints.47070.
Fu J, Liu S, Du S, Ruan S, Guo X, Pan W, Sharma A, Konigorski S (2023). Multimodal N-of-1 trials: a novel personalized healthcare design. arXiv.https://arxiv.org/abs/2302.07547.
Laure T, RCME Engels, Remmerswaal D, Spruijt-Metz D, Konigorski S, Boffo M (2023). Optimization of a transdiagnostic mobile emotion regulation intervention for university students: protocol for a Micro Randomized Trial. PsyArXiv.http://psyarxiv.com/xgq2r.
Ehrig L, Wagner A, Wolter H, Correll CU, Geisel O, Konigorski S (2022). FASDetect - A machine learning-based app to screen for the risk of fetal alcohol-spectrum disorder in youth with attention-deficit/hyperactivity disorder symptoms. medRxiv, https://doi.org/10.1101/2022.09.12.22279880.
Zhou T, Schneider J, Arnrich B, Konigorski S (2022). Analyzing population-level trials as N-of-1 trials: an application to gait. arXiv. https://arxiv.org/abs/2209.03253
Hohmuth N, Khanyaree I, Lang A, Duering O, Konigorski S, Višković V, Heising T, Egender F, Remschmidt C, Leistner R. (2022) Participatory disease surveillance for a mass gathering - a prospective cohort study on COVID-19, Germany 2021. https://doi.org/10.21203/rs.3.rs-1908358/v1
Gärtner T, Schneider J, Arnrich B, Konigorski S (2022). Comparison of Bayesian networks, G-estimation and linear models to estimate causal treatment effects in aggregated N-of-1 trials. medRxiv. https://doi.org/10.1101/2022.07.21.22277832.
Fehr J, Piccininni M, Kurth T, Konigorski S (2022). A causal framework for assessing the transportability of clinical prediction models. medRxiv https://doi.org/10.1101/2022.03.01.22271617.
Kirchler M, Konigorski S, Norden M, Meltendorf C, Kloft M, Schurmann C, Lippert C (2021). transferGWAS: GWAS of images using deep transfer learning. bioRxiv 2021.10.22.465430. https://doi.org/10.1101/2021.10.22.465430.
Zenner AM, Böttinger E, Konigorski S (2021). StudyMe: a new mobile app for user-centric N-of-1 Trials. arXiv:2108.00320. http://arxiv.org/abs/2108.00320.
Klinger JE, Ravarani CNJ, Baukmann HA, Cope JL, Böttinger EP, Konigorski S, Schmidt MF (2021). Interaction-based feature selection algorithm outperforms polygenic risk score in predicting Parkinson’s Disease status. medRxiv 2021.07.20.21260848.https://doi.org/10.1101/2021.07.20.21260848.
Monti R, Rautenstrauch P, Ghanbari M, James AR, Ohler U*, Konigorski S*, Lippert C* (2021). Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes. bioRxiv 2021.05.27.444972. https://doi.org/10.1101/2021.05.27.444972.
Rübsamen N, Pape S, Konigorski S, Zapf A, Rücker G, Karch A (2021). Diagnostic accuracy of cerebrospinal fluid and blood biomarkers for the differential diagnosis of sporadic Creutzfeldt-Jakob disease in a specialized care setting: a systematic review and (network) meta-analysis. medRxiv 2021.03.25.21254312. https://doi.org/10.1101/2021.03.25.21254312.
Konigorski S, Wernicke S, Slosarek T, Zenner AM, Strelow N, Ruether FD, Henschel F, Manaswini M, Pottbäcker F, Edelman JA, Owoyele B, Danieletto M, Golden E, Zweig M, Nadkarni G, Böttinger E (2020). StudyU: a platform for designing and conducting innovative digital N-of-1 trials. arXiv:2012.14201. https://arxiv.org/abs/2012.14201.
Fehr J, Konigorski S, Olivier S, et al. (2020). Computer-aided interpretation of chest radiography to detect TB in rural South Africa.medRxiv:2020.09.04.20188045. https://doi.org/10.1101/2020.09.04.20188045.
Rüdiger S, Konigorski S, Edelman J, Zernick D, Thieme A, Lippert C (2020). Forecasting the SARS-CoV-2 effective reproduction number using bulk contact data from mobile phones. medRxiv:2020.10.02.20188136. https://doi.org/10.1101/2020.10.02.20188136.
Piccininni M, Konigorski S, Rohmann JL, Kurth T (2020). Directed Acyclic Graphs and causal thinking in clinical risk prediction modeling. arXiv:2002.09414. https://arxiv.org/abs/2002.09414. (now published in BMC Medical Research Methodology, see above)
Book chapters
Edelman JA, Owoyele BA, Santuber J, Konigorski S (2022). Designing for Value Creation: Principles, Methods, and Case Insights from Embedding Designing-as-Performance in Digital Health Education and Research. In: Meinel, C., Leifer, L. (eds) Design Thinking Research. Understanding Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-09297-8_10.
Konigorski S, Glicksberg BS (2020). Using C-JAMP to investigate epistasis and pleiotropy. In: Wong KC (eds) Epistasis. Methods in Molecular Biology, vol 2212. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0947-7.
Fehr J, Konigorski S, Lippert C (2020). Data Science für Digitale Medizin. [Data science for digital medicine]. In: Matusiewicz D, Henningsen M, Ehlers J (eds). Digitale Medizin – Kompendium für Studium und Praxis. [Digital Medicine – A textbook for students and professionals]. Medizinisch Wissenschaftliche Verlagsgesellschaft, Berlin. https://www.mwv-berlin.de/produkte/!/title/digitale-medizin/id/673.
Fehr J, Konigorski S, Lippert C. (2020) Bias and Fairness. In: DEL7.3: Data and artificial intelligence assessment methods (DAISAM) reference, FG-AI4H-I-035, Geneva, Switzerland.
Konigorski S, Yilmaz YE. CIEE: Estimating and testing direct effects in directed acyclic graphs using estimating equations. R package version 0.1.1.https://CRAN.R-project.org/package=CIEE.
Contact
Chair Representative:
Prof. Dr. Christoph Lippert Professor for Digital Health & Machine Learning Room: G-2.1.23 Tel.: +49-(0)331 5509-4850 E-Mail: office-lippert(at)hpi.de
Office:
Campus III, Haus G2 Room: G-2.1.22 Tel.: +49-(0)331 5509-4850 Fax: +49-(0)331 5509-4849 E-Mail: office-lippert(at)hpi.de
Visiting address:
Campus III Building G2 Rudolf-Breitscheid-Straße 187 14482 Potsdam, Germany