Prof. Dr. Tobias Friedrich

Current Research Projects

Our group is involved in several national and international research projects, funded by the German Research Foundation (DFG), the European Commission (EU), the Australian Research Council (ARC) and others. For a list of finished research projects, see here.

Computing Strategic Routes

Traffic congestion is an increasingly important issue that leads to longer travel times for everyone involved. It can be tackled by strategic routing, where (re)routing recommendations are distributed by traffic authorities and taken into account by the drivers' navigation systems. This central coordination will lead to faster, greener and safer traffic. In corporation with TomTom, students work on new algorithmic approaches for efficiently computing such strategic routes.

Project Leader: Tobias Friedrich
Supervisors: Thomas Bläsius, Pascal Lenzner
Project term: October 2019 till July 2020
Partner: TomTom Berlin

Scale-Free Satisfiability

Boolean logic is the standard language to describe industrial decision problems coming from various domains like logistics and optimization. Solving these problems corresponds to finding a satisfying assignment to the Boolean variables of a given formula. This can be found very efficiently with industrial solvers for instances with millions of variables. This practical efficiency stands in contrast to the most classical result of theoretical computer science: the proven computational hardness of propositional satisfiability (SAT). The disparity between these results is due to the stark structural differences between worst-case formulas and those that appear in practical applications. To address this, this project will study non-uniform and scale-free distributions, which appear to resemble industrial SAT instances more closely.

Principal Investigator: Tobias Friedrich
Participating Investigator: Thomas Bläsius
Involved Mercator Fellows: Jordi Levy and Vijay Ganesh
Project term: Granted November 2018
Funded by: German Research Foundation (DFG)

Evolutionary Diversity Optimisation

This project aims to build up and establish the area of evolutionary diversity optimisation. The project will cover the design and application of evolutionary diversity optimisation methods to complex problems of significance and high national economic benefit and build up the theoretical foundations of these methods. The project is expected benefit decision makers by providing them a diverse set of high quality alternatives to choose from. This project will allow them to make highly informed decisions and lead to more reliable solutions for optimisation problems, in areas of high economic impact such as manufacturing and supply chain management.

Chief Investigators: Frank Neumann
Partner Investigators: Tobias Friedrich
Project term: January 2019 till December 2021
Funded by: Australian Research Council (ARC)

Virtual Compressor

The project aims at improving the reliability of turbomachinery by incorporating physical substitute models. The developed virtual compressor is part of a system for permanent machine monitoring and predictive maintenance for large turbomachinery. The solution incorporates data acquisition directly at the machine, an IoT platform for saving and visualization of the data, and machine-dependent analysis tools. Our research group is responsible for developing suitable methods from artificial intelligence for anomaly detection and forecasts.

Principal Investigator: Tobias Friedrich
Participating Investigator: Manuel Rizzo, Martin Krejca
Project term: Nov 2018 till Oct 2021
Funded by: Investitionsbank des Landes Brandenburg (ILB)



The Hyperbolic Geometry of Networks

Network science is driven by the question which properties large real-world networks have and how we can exploit them algorithmically. Hyperbolic geometry has proven to be a useful tool in this regard. Our goal is to better understand the relationship between large real-world networks and hyperbolic geometry. We want to study properties of hyperbolic random graphs as well as embeddings of real-world networks into hyperbolic space. Moreover, we want to exploit these structural insights by developing algorithms that perform provably well on hyperbolic random graphs and, in turn, empirically well on real-world networks.

Principal Investigator: Tobias Friedrich
Participating Investigator: Thomas Bläsius
Project term: Granted Februar 2018
Funded by: German Research Foundation (DFG)

Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO)

This project brings together theoreticians and practitioners who are working in the field of nature-inspired search and optimization heuristics. Its goal is on one hand to make theoretical findings more accessible for researchers and engineers who are concerned with applications, on the other hand to make theoreticians aware of practical problems and the kind of questions that arise in practical applications.

Action chairs: Thomas Jansen, Carola Doerr
Work group leaders: Tobias Friedrich, Christine Zarges, Günther Raidl, Carlos Fonseca
Project term: March 2016 till March 2020
Funded by: European Cooperation in Science and Technology

The Structure of Computational Learning

This project aims at using mathematical methods to identify the theoretical foundations of the capabilities and limits of computational learning. It uses a framework for learning criteria which allows for general statements, informing about many learning criteria at once.

Principal Investigator: Timo Kötzing
Project term: Granted September 2015
Funded by: German Research Foundation (DFG)

Analysis of Discrete Load Balancing on Heterogeneous Networks (ADLON)

Despite a large body of theoretical studies on load balancing, most results do not match the complex and heterogenous structure of the underlying network and the corresponding load balancing tasks. This project bridges the gap between the well-studied homogenous setting and the theoretically much less understood heterogenous load balancing problems that occur in practice.

Principal Investigator: Tobias Friedrich
Participating Investigator: Thomas Sauerwald
Project term: Started October 2015
Funded by: German Research Foundation (DFG)

Completed Research Projects

The rest of this page lists our finished research projects.

Lossy Compression of Time Series Data

Time series data is data derived from consecutive measurements over time. It appears in all domains of applied science and engineering. Storing time series data can quickly overload any available storage. The random noise introduced by physical measurements fundamentally limits the achievable compression rate. We want to evaluate existing algorithms and develop new algorithms for lossy compression schemes for high-frequency time series data from different domains. The key question is what compression can be achieved without losing too much information while still being able to analyze the data and using it for modeling and statistical predictions.

Project Leader: Tobias Friedrich
Supervisors: Timo Kötzing, Manuel Rizzo, Martin Schirneck
Project term: October 2018 till July 2019
Partner: Industrial Analytics IA GmbH

Theory of Swarm Algorithms and Their Effectiveness in Uncertain Environments (TOSU)

Bio-inspired swarm algorithms are well established in practice for solving optimization problems with complex constraints even in difficult domains involving uncertainty. This project analyzes theoretically swarm-based search heuristics for dynamically changing and stochastic objectives.

Principal Investigator: Tobias Friedrich
Participating Investigators: Timo KötzingFrank Neumann
Project term: June 2016 till May 2019
Funded by: German Research Foundation (DFG)

Bio-inspired Computing for Problems with Dynamically Changing Constraints

The aim of this project is to design bio-inspired computing methods for dynamically changing environments. Dynamic problems arise frequently in the areas of engineering, logistics, and manufacturing. Such problems are usually subject to a large set of constraints that change over time due to changes in resources. Algorithms that can deal with such dynamic changes would benefit decision-makers. The project aims to provide a foundational theory as the basis for the design of bio-inspired algorithms dealing with dynamically changing constraints and provide approaches for dealing with important industrial problems.

Chief Investigators: Frank NeumannZbigniew Michalewicz
Partner Investigators: Tobias FriedrichMarc Schoenauer
Project term: January 2016 till December 2018
Funded by: Australian Research Council (ARC)

Optimizing Project Schedules

All medium and large corporations are required to have their financial statements reviewed by an auditor. Each auditor has a certain set of skills and available time slots. Performing an audit requires different skills at different times. This results in a complex scenario with many hard and soft constraints to satisfy. In corporation with KPMG AG Wirtschaftsprüfungsgesellschaft, eight bachelor and three PhD students work on a new scheduling algorithm.

Project Leader: Tobias Friedrich
Supervisors: Martin Krejca, Ralf Rothenberger
Project term: October 2017 till July 2018
Partner: KPMG AG Wirtschaftsprüfungsgesellschaft

Efficient Shortest Paths on Portable Devices

The Navigation Data Standard (NDS) is a new regularization for map data used, for example, in portable navigation devices. It restricts the data to be only accessible in blocks corresponding to the earth’s grid. Due to the limited memory of portable devices, it is not possible to store the entire map in memory at once. In corporation with TomTom, five students work on new algorithmic approaches for efficient routing algorithms that load as few blocks as possible.

Project Leader: Tobias Friedrich
Thomas Bläsius, Gregor Lagodzinski, Martin Krejca, Ralf Rothenberger
Project term: October 2016 till July 2017
Partner: TomTom Berlin

Speed of Adaptation in Population Genetics and Evolutionary Computation (SAGE)

Biological evolution has produced an extraordinary diversity of organisms. Evolutionary computation has found many innovative solutions to optimisation and design problems. Both fields have studied the speed of adaptation independently, and with orthogonal approaches. This project brings together an interdisciplinary consortium from both fields to synergise these complementary approaches and to create the foundation of a unified quantitative theory describing the speed of adaptation in both biological and artificial evolution.

Consortium: Tobias FriedrichPer Kristian LehreTiago PaixãoDirk Sudholt
Links: Project Homepage
Project term: January 2014 till December 2016
Funded by: European Commission FP7 ICT FET Open

Parameterized Analysis of Bio-inspired Computing – From Theory to High Performing Algorithms

This project establishes the field of parameterised analysis of bio-inspired computing. It rigorously analyses features of instances of combinatorial optimisation problems and their impact on the runtime behaviour of bio-inspired computing methods such as evolutionary algorithms and ant colony optimisation.  

Chief Investigator: Frank Neumann
Partner Investigator: Tobias Friedrich
Project term: January 2014 till December 2016
Funded by: Australian Research Council (ARC)

Finding a Parking Place Quickly

Looking for a parking place in urban areas is often time consuming and stressful. Up-to-date navigation systems are barely capable of directing the driver to a good nearby parking lot. This is mostly due to missing data about available parking places on the roadside and little research on this topic. In corporation with TomTom five students work on new algorithmic approaches for efficient on-street parking.

Project Leader: Tobias Friedrich
 Martin Krejca, Ralf Rothenberger
Project term: October 2015 till July 2016
Partner: TomTom Berlin

Average-Case Analysis of Parameterized Problems and Algorithms (ACAPA)

This project aims to analyze the average-case behavior of some known parameterized algorithms, mainly motivated by the recent encouraging experimental studies of these algorithms. Most of these studies record, compared to the worst-case analysis, a much more promising performance on real-world data.

Principal Investigator: Tobias Friedrich
Project term: December 2013 till August 2016
Funded by: German Research Foundation (DFG)

Smoothed Parameterized Complexity

Two main approaches have been considered in dealing with NP-hard problems in the last decade. One is parameterized complexity theory. The other one follows a probabilistic way of analyzing problems and algorithms. This project aims at developing the necessary tools and theories to combine parametrized and smoothed complexity.

Principal Investigator: Tobias Friedrich
Project term: January 2014 till June 2015
Funded by: German-Israeli Foundation for Scientific Research and Development

Theoretical Foundations of Swarm Intelligence

Swarm based randomized search heuristics such as ant colony optimization (ACO) and particle swarm optimization (PSO) are established in various applications and particularly in dynamic optimization problems, providing good solutions. Unlike e.g. in evolutionary algorithms (EAs), hardly any theoretical foundations existed before the project started. The main purpose of this research project was to analyze the efficiency of different approaches.

Principal Investigators: Tobias FriedrichFrank Neumann, Carsten Witt
Project term: 2009 till 2013
Funded by: German Research Foundation (DFG)