22.10. 15:30  G1.E 15/16  Martin Schirneck  Enumerating Unique Column Combinations with a Sampleand(Don’t)Restart Strategy
A unique column combination (UCC) is a small fingerprint of a relational database. Enumerating all inclusionwise minimal UCCs is therefore a reoccurring task in data profiling. In this talk we explore the close connection between UCCs and the hitting set problem. We show how this connection leads to new enumeration algorithms. In particular, we present a technique that combines a sampling strategy for databases with an inputguided search heuristic to find hitting sets. A preliminary experimental evaluation indicates that our approach is not only competitive with the current stateoftheart UCC algorithm, but can process databases that were previously out of reach for data profiling.
The talk presents ongoing research with Johann Birnick, Thomas Bläsius, Tobias Friedrich, Julius Lischeid, Felix Naumann, Kitty Meeks, and Thorsten Papenbrock.

30.10. 15:00  A2.2  Fabian Sommer  Controlling Assortativitiy in Heterogeneous Geometric Random Graphs
Hyperbolic random graphs have become a popular random graph model over the last decade, as they resemble many realworld graphs.
In particular, they have a heterogeneous degree distribution, high clustering and a smallworld property.
Another property of graphs that distinguishes technical and biological from social networks is degree assortativity – a measure
that describes the correlation between degrees of adjacent nodes.
Most technical and biological graphs are found to have a significant negative assortativity, while the assortativity of social
networks is usually positive. However, hyperbolic random graphs offer no way to control the degree assortativity.
We explore and compare multiple ways to extend hyperbolic random graphs or the similar geometric inhomogeneous random graphs
so that the expected assortativity can be controlled while maintaining the properties that made hyperbolic random graphs attractive
in the first place. In particular, we describe a model with controllable assortativity that has high clustering, smallworld and a
heterogeneous degree distribution. We also describe how such graphs can be generated efficiently.

08.11. 13:00  A1.1  Master Project Summer 2019  From Symmetry to Asymmetry: Generalizing TSP Approximations by Parametrization
Asymmetric instances for the travelling salesman problem are practically relevant,
but still there is a big gap in approximation guarantees between symmetric and
asymmetric instances (assuming triangle inequality in either case).
We explore this apparent difference between symmetry and asymmetry by generalizing
the tree doubling and Christofides algorithm, the two most common approximations for TSP,
to parameterized approximations for ATSP.
The parameters we consider for the respective parameterizations are upper bounded by the
number of asymmetric distances in the given instance, which yields algorithms to
efficiently compute constant factor approximations also for moderately asymmetric TSP
instances.
As generalization of the Christofides algorithm, we derive a parameterized
2.5approximation, where the parameter is the size of a vertex cover for the subgraph
induced by the asymmetric edges.
Our generalization of the tree doubling algorithm gives a parameterized 3approximation,
where the parameter is the number of asymmetric edges in a given minimum spanning arborescence.
Both algorithms are also stated in the form of additive lossy kernelizations, which allows
to combine them with known polynomial time approximations for ATSP.
Further, we combine them with a notion of symmetry relaxation which allows to trade
approximation guarantee for runtime.

26.11. 13:30  HE.51  Maximilian Katzmann  Robots, 3D Scene Understanding, and the Knowledge Graph: An Internship at... Google?
Earlier this year I (somewhat suddenly) realized that, maybe, I can't
be a PhD student forever. What should I do afterwards? The two most
prominent options are: staying in academia or going into industry.
Under the impression that I know what working at university is like, I
wanted to learn more about the second option. Therefore, I did an
internship as a software engineer at a large tech company.
In this lightweight presentation I talk about how I got in, as well as
the project that I worked on. This includes robots, how to answer
questions about indoor scenes programmatically, and how that is
related to Google's Knowledge Graph. Along the way I will share what
I learned about working in industry.

05.12. 15:00  HE.52  Marcus Pappik  Convergence and Hardness of Strategic Schelling Segregation
The phenomenon of residential segregation was captured by Schelling's
famous segregation model where two types of agents are placed on a grid
and an agent is content with her location if the fraction of her neighbors
which have the same type as her is at least \(\tau\), for some
0 < \(\tau\) < 1 . Discontent agents simply swap their location with a
randomly chosen other discontent agent or jump to a random empty cell.
We analyze a generalized gametheoretic model of Schelling segregation
which allows more than two agent types and more general underlying graphs
modeling the residential area. For this we show that both aspects heavily
influence the dynamic properties and the tractability of finding an optimal
placement. We map the boundary of when improving response dynamics (IRD)
are guaranteed to converge and we prove several sharp threshold results
where guaranteed IRD convergence suddenly turns into a strong
nonconvergence result: a violation of weak acyclicity. In particular, we
show threshold results also for Schelling's original model, which is in
contrast to the standard assumption in many empirical papers. In case of
convergence we show that IRD find equilibria quickly.

10.12. 13:30  G3.E15/16  Katrin Casel  Graph and String Parameters: Connections Between Pathwidth, Cutwidth and the Locality Number
We investigate the locality number, a recently introduced structural parameter for strings,
and its connection to two important graphparameters, cutwidth and pathwidth.
These connections allow to show that computing the locality number is NPhard but fixed parameter
tractable (when the locality number or the alphabet size is treated as a parameter),
and can be approximated with a logarithmic ratio.
As a byproduct, we also relate cutwidth via the locality number to pathwidth, which is of
independent interest, since it improves the currently best known approximation algorithm for cutwidth.
In this talk, I will tell you the tale of how this collection of essentially four simple polynomialtime
reductions got accepted to ICALP.

11.12. 11:00  HE.51  Ziena Elijazyfer  L Vertex Cover and LU Subgraph Cover
Primarily, we consider a generalization of the famous Vertex Cover Problem.
Given are an edge lengths connected graph and a parameter L.
The task is to find a minimum set of vertices R, such that every connected subgraph with a total
length of at least L has a vertex from R.
The L Vertex Cover Problem was motivated to generate length restricted subgraphs for toll enforcement,
which is also a part of the seminar.
Summarized, we will see different solution methods for both problems. Especially for linear programming
approaches, we introduce general optimization methods, which are also applicable for different
optimization problems.

18.12. 11:00  HE.52  Hagen Echzell  FlowBased Network Creation Games
While a lot of research considers the design of physical or logical networks as a centralized problem,
most realworld networks develop by decentralized, uncoordinated and often marketbased processes
that are driven by independent, selfish agents. In 2003, Fabrikant et al. introduced their “Network Creation Game”,
which models the creation of Internetlike networks by selfish agents without a central coordination authority:
Node agents pay a fixed price for each edge they build towards other agents to reduce the cumulative hopdistance to the other agents in the resulting graph.
Ever since, a lot of research on similar models has been conducted, establishing a whole class of “Network Creation Games”.
To the best of our knowledge, all of them have in common, that the central metric for network quality is based on the distance to other agents,
which implies an optimized latency, which is an adequate approach for a lot of network usecases.
Nevertheless, with the rising demand for cloud storage, high quality video streaming
and also in physical networks like the power grid, bandwidth/throughput is a crucial metric.
Based on the maximum flow problem – a concept first introduced by Harris & Ross as well as Dantzig in 1951 to measure the capacity of railway networks –
my master’s thesis presents a novel kind of Network Creation Game that regards the throughput between pairs of agents in a graph as the crucial metric for network quality.

18.12. 11:45  HE.52  Louise Molitor  The Current State of Schelling
Residential segregation is a widespread phenomenon that can be observed in almost every major city.
Schelling's famous agentbased model for residential segregation explains how such clusters can form even if all agents are tolerant,
i.e., if they agree to live in mixed neighborhoods.
Schelling is an exciting, ongoing topic in the game theoretic community and this year two working groups submitted some papers back and forth.
In this talk I would like to give an overview about this line of research with focus on our last paper "Topological Influence and Locality in Swap Schelling Games"
which put us into the lead. So the current paper score is 3 to 2 in our favor.

14.01. 13:30  H.E51  Ágnes Cseh  Optimal Kidney Exchange with Immunosuppressants
The deployment of centralized matching algorithms for efficient exchange of donated kidneys is a major success story of market design. In the standard kidney exchange problem, blood or tissuetype incompatibility between a patient and a donor makes a transplant impossible. However, novel technological advances on potent immunosuppressant drugs can lift this barrier.
We present a general computational framework to study kidney exchange with immunosuppressants. In contrast to the standard kidney exchange problem, our problem also involves the decision about which patients get immunosuppressants to make them compatible with originally incompatible kidneys. Our main contribution is a set of general algorithms that provide flexibility in terms satisfying meaningful purposes.
Joint work with Haris Aziz.

16.01. 14:30  A1.2  Davis Issac  Connected partition of graphs
I will talk about connected partitioning of graphs, where we are given a graph and want to partition the vertices into
k such that each part induces a connected subgraph and there are also some additional constraints on the
size/weight of each part. This problem has applications in the fields of road transport networks, multirobot
coordination, power grid networks, imageprocessing, clustering etc. We look at a special case, when we know
that the input graph is kconnected. In this setting, we will look at a classical theorem from the 70's
called the GyoriLovasz theorem and a recent vertexweighted generalization of it. I will give an outline
of a proof that we recently (in ICALP '18) gave for the vertexweighted generalization. The GyoriLovasz
theorem and its generalization only give existential results (and also exponential algorithms) for connected
kpartition of kconnected graphs. It is an interesting open question to find efficient algorithms for the
same. I will speak about this and also some other related open problems.

21.01. 15:30  D.E9  Gregor Lagodzinski  Counting, Modular Counting and Symmetries
The notion of a homomorphism between graphs as a map between the associated vertices that
preserves edges is not only simple in its definition but also very powerful in its generality.
Many important problems and their countingversion can be encoded as homomorphisms to specific
target graphs, e.g. vertexcolouring and independentset. Hence, it is less surprising that the
study of graph homomorphisms is a very active research topic both enjoying new results and
rediscoveries of old results providing new techniques and insights.
In this talk, we will discuss an instance of the latter in the form of a recent paper by Chen,
Curticapean and Dell from 2019. They study the problem of determining the number of homomorphisms
to a given target graph and rediscover the same dichotomy as Dyer and Greenhill in 2000.
Their approach to generalize the problem even more allows them to avoid a big case distinction and
provides additional insights into the problem class. After the discussion of their approach we will
transition to the problem of modular counting homomorphisms and to the question whether the approach
of Chen et al. can be applied. In particular, the modular version introduces an additional phenomenon
as symmetric substructures might get cancelled leading to a loss of structural properties. We will conclude
the talk by a short peak into the study of symmetries, an even older study full of history and big names.

22.01. 11:00  D.E10  Vanja Doskoč  Cautious Limit Learning
In the framework of language learning in the limit from text, a learner (a computable function)
is successively presented all and only the information of a target language (a computably enumerable
subset of the natural numbers). With every new datum, the learner makes a new guess which set it
believes to be presented. Learning is successful once the learner sticks to a single, correct
description of the target language (explanatory learning). Cautious learners additionally may
never output a hypothesis which is a proper subset of a previous guess.
Although being a seemingly natural way of learning, being cautious is known to severely lessen
the learning capabilities of explanatory (syntactic) learners. To further understand this loss
of learning power, previous work introduced weakened versions of cautious learning and gave first
partial results on their relation. In this talk, we provide the audience with a feeling for language
learning in the limit from text and discuss the completed picture for cautious learning restrictions.

29.01. 11:00  HE.51  Andreas Göbel  Algorithmic techniques for approximating partition functions
Partition functions originate from statistical physics and describe statistical properties of a
system of particles defined in terms of local interactions among its particles.
An interesting phenomenon in these particle systems is that they undergo a phase transition,
depending on the values of a parameter called ``external field'', expressing external conditions
such as temperature, pressure, magnetic field etc.. In recent remarkable connections between computer
science and statistical physics it has been shown that the approximability of these partition
functions undergoes a computational phase transition (i.e. approximable in polynomial time vs NPhard
to approximate) for the exact same values of the external field as the physical phase transition.
In this talk we will survey the three main algorithmic techniques for approximating partition functions
that appear in the literature and their connections to statistical physics.

04.02. 13:30  HE.51  Daniel Stephan, Marcus Wilhelm  Master thesis presentations
(Greedy) Routing: Succinctness vs. Stretch
In many networks routing of messages is important. A common routing
strategy relies on routing tables. These guarantee that every message is
routed along the shortest path, but require a linear number of bits per
vertex.
In the talk I give an overview over alternative approaches that use more
succinct routing information, meaning they require less bits per vertex.
Most notably, in greedy and local routing package forwarding relies only
on local information stored at the vertices. This is achieved at the
cost of stretch, i.e. routing may not always proceed along a shortest
path between two vertices.
Analysis of a practical algorithm for treewidth
Treewidth and algorithms on tree decompositions are a
cornerstone of parametrized algorithms. Still, while fundamental
algorithmic results for computing treewidth in FPT time or \(O(2^n)\) have
been known for decades, algorithms that perform well in practice were
lacking until recently.
This changed with the Parametrized Algorithms and Computational
Experiments Challenge (PACE) 2017, in which contestants tried to
implement practically good algorithms. One of the submitted algorithms,
by Hisao Tamaki, was particularly successful and was honored with a Best
Paper Award at ESA 2017.
In this workinprogress talk (master thesis edition), I want to give an
intuitive view of the algorithm and present my previous work and current
plans of analyzing its runtime on different graph classes including
hyperbolic random graphs.

13.02. 13:30  A1.1  Stefan Neubert, Martin Schirneck  ADFOCS 2018: FineGrained Complexity  Tools and Reductions
Finegrained complexity gained some traction in the TCS community in recent
years. The field aims at pinpointing the "true" complexity of a
computational problem. In this survey talk we present four excerpts
highlighting prominent tools in the area. We first introduce the concept
of finegrained reductions and use them to transfer the (conjectured)
exponential complexity of CNFSatisfiability to the polynomial Orthogonal
Vectors problem. We stay in the polynomial domain to discuss an equivalence
class of the AllPairs Shortest Path problem. Finally, we show how
algorithms for the 3Sum problem can be sped up by fast Fourier transform.

19.02. 11:00  A1.1  Katerina Niklanovits (National University of Athens)  Balanced separators and minors in expanders
We call a graph G an expander, if every relatively small subset of its vertices, has relatively many
neighbors in G. Due to the high connectivity properties expanders have, they are closely related to
another notion of graph theory, balanced separators. We say that a subset S of the vertices of a graph G
is a balanced separator of G, if it partitions G into two relatively equal components.
In this talk, we will briefly see some results on balanced separators and then we will focus
on the properties and substructures one can find in expanders. In particular, we will see in detail
a result about the existence of high average degree minors in expanders, by Krievelevich and Sudakov.

27.02. 11:00  A1.1  Maximilian Katzmann  Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs
As one of the classical NPcomplete graph problems Vertex Cover is proven to be computationally hard. In contrast, recent experiments suggest that on many
realworld networks Vertex Cover can be solved very efficiently. We link these observations to two properties that are observed in many realworld networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branchandreduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling realworld networks. In fact, we are able to show that the Vertex Cover problem on hyperbolic random graphs can be solved in polynomial time, with high probability.

04.03. 11:00  A1.2  Anna Melnichenko  Selfish Network Creation: from the beginning to nowadays
Networks play central roles in a wide variety of social, economic and political interactions. Therefore, understanding realworld network structure and the process of their formation is essential to science. The research effort of Combinatorial Optimization and Operation Research fields led to structural and algorithmic insights about networks. However, all of them assume the existence of a central authority designing the network. In practice, many important infrastructure networks like the physical Internet, the road network and the electricity network are the outcomes of a distributed and decentralized design process by many interacting agents. This observation kindled the study of gametheoretic models for network formation by selfish agents. In these models the network is defined by selfish agents who can locally modify the network structure to maximize their utility.
In this talk, I will give a brief overview of the history and development of Network Creation Games. We will see what questions Game Theory was able to answer and what improvement it achieved towards an understanding of the problem of network formation.

10.03. 11:00  DE.10  Warut Suksompong  The Price of Connectivity in Fair Division
We study the allocation of indivisible goods that form an undirected graph and quantify the loss of fairness when we impose a constraint that each agent must receive a connected subgraph. Our focus is on wellstudied fairness notions including envyfreeness and maximin share fairness. We introduce the price of connectivity to capture the largest gap between the graphspecific and the unconstrained maximin share, and derive bounds on this quantity which are tight for large classes of graphs in the case of two agents and for paths and stars in the general case. In addition, we determine the optimal relaxation of envyfreeness that can be obtained with each graph for two agents, and characterize the set of trees and complete bipartite graphs that always admit an allocation satisfying envyfreeness up to one good (EF1) for three agents. Our work demonstrates several applications of graphtheoretic tools and concepts to fair division problems.
Joint work with Xiaohui Bei, Ayumi Igarashi, and Xinhang Lu.

17.03. 11:00  A1.1  Philipp Fischbeck  Adventures in Evaluating Network Models
In an attempt to better understand network structures, several network models have been introduced in the recent decades. However, the relevance and usefulness of such models greatly depends on how closely the generated networks resemble their realworld counterparts, with respect to some structural properties. In this talk, I present challenges and insights from using the technique of "posterior predictive checks". We fit the parameters of a network model to match realworld networks, generate networks with the fitted parameters, and then look for systematic discrepancies between the two resulting network classes (real and generated). This allows for finding weaknesses and possible improvements of the model.

26.03. 11:00  A2.2  Marcus Pappik  New Conditions via Markov Chains: Approximating Partition Functions of Abstract Polymer Models without Cluster Expansion
Abstract polymer models are combinatorial structures that consist of a set of weighted objects, called polymers, together with a reflexive and symmetric incompatibility relation that describes which polymers cannot occur together.
In this thesis we present the first Markov chain approach for sampling from the Gibbs distribution of abstract polymer models. Known Markov chains for polymer models from vertex and edge spin systems can be seen as special cases of this polymer Markov chain. We introduce the concept of polymer cliques and propose a generalized polymer mixing condition as a way to guarantee rapid mixing of our chain. The form of this condition is similar to conditions from cluster expansion approaches, such as the KoteckýPreiss condition and the FernándezProcacci condition, but it is less restrictive.
To obtain an efficient sampling scheme for the Gibbs distribution from our polymer Markov chain, we prove that it suffices to draw each step of the chain approximately according to its transition probabilities. As one way to approximate each transition of the chain, we suggest to truncate each polymer clique based on some notion of size. We introduce the clique truncation condition as a general tool to determine the maximum size of polymers that we have to consider for the steps of the chain.
We prove that our sampling scheme can be used to construct an FPRAS for the partition function. By this, we obtain the first Markov chain Monte Carlo method that works for abstract polymer models in a similar regime as cluster expansion approaches and beyond, while avoiding their complicated analytical assumptions and arguments. Further, we illustrate how our approach can be applied to algorithmic problems like the hardcore model on bipartite expander graphs and the perfect matching polynomial to obtain new tradeoffs between runtime and weight bounds. We emphasize that similar results can be obtained for a variety of other applications.

09.04. 14:00  virtual  Martin Krejca  The Univariate Marginal Distribution Algorithm Copes Well With Deception and Epistasis
In the world of natureinspired heuristic optimization, two general approaches exist: evolutionary algorithms (EAs) maintain a set of solutions, which is modified iteratively through variation operators, such as mutation. In contrast, estimationofdistribution algorithms (EDAs) maintain a probabilistic model of the entire search space, which is iteratively adjusted with respect to samples drawn from that model. Until recently, theoretical results comparing these two approaches showed that EDAs perform usually as well as EAs – sometimes they outperformed them drastically. Then, at FOGA ’19, Lehre and Nguyen introduced the benchmark function DeceptiveLeadingBlocks (DLB), which is mildly deceptive and uses dependencies among its variables (known as epistasis). They proved that the EDA named univariate marginal distribution algorithm (UMDA) has an exponential run time on DLB, whereas all common EAs have a polynomial (cubic) run time.
In this talk, we show that the exponential run time of the UMDA is an artifact of a suboptimal parameter choice. In fact, when choosing the parameters adequately, the UMDA has a quasisquared run time on DLB, making it thus even more efficient than the EAs (although, so far, only upper bounds have been proven). We discover why DLB is easy for the UMDA, and we discuss how to choose your parameters in general for EDAs if you don’t know what your landscape looks like.
