Generalization Bounds for the Area Under the ROC Curve. Agarwal, Shivani; Graepel, Thore; Herbrich, Ralf; Har-Peled, Sariel; Roth, Dan in *Journal of Machine Learning Research* (2005). **6** 393–425.

We study generalization properties of the area under the ROC curve (AUC), a quantity that has been advocated as an evaluation criterion for the bipartite ranking problem. The AUC is a different term than the error rate used for evaluation in classification problems; consequently, existing generalization bounds for the classification error rate cannot be used to draw conclusions about the AUC. In this paper, we define the expected accuracy of a ranking function (analogous to the expected error rate of a classification function), and derive distribution-free probabilistic bounds on the deviation of the empirical AUC of a ranking function (observed on a finite data sequence) from its expected accuracy. We derive both a large deviation bound, which serves to bound the expected accuracy of a ranking function in terms of its empirical AUC on a test sequence, and a uniform convergence bound, which serves to bound the expected accuracy of a learned ranking function in terms of its empirical AUC on a training sequence. Our uniform convergence bound is expressed in terms of a new set of combinatorial parameters that we term the bipartite rank-shatter coefficients; these play the same role in our result as do the standard VC-dimension related shatter coefficients (also known as the growth function) in uniform convergence results for the classification error rate. A comparison of our result with a recent uniform convergence result derived by Freund et al. (2003) for a quantity closely related to the AUC shows that the bound provided by our result can be considerably tighter.

PAC-Bayesian Compression Bounds on the Prediction Error of Learning Algorithms for Classification. Graepel, Thore; Herbrich, Ralf; Shawe-Taylor, John in *Machine Learning* (2005). **59** 55–76.

We consider bounds on the prediction error of classification algorithms based on sample compression. We refine the notion of a compression scheme to distinguish permutation and repetition invariant and non-permutation and repetition invariant compression schemes leading to different prediction error bounds. Also, we extend known results on compression to the case of non-zero empirical risk. We provide bounds on the prediction error of classifiers returned by mistakedriven online learning algorithms by interpreting mistake bounds as bounds on the size of the respective compression scheme of the algorithm. This leads to a bound on the prediction error of perceptron solutions that depends on the margin a support vector machine would achieve on the same training sample. Furthermore, using the property of compression we derive bounds on the average prediction error of kernel classifiers in the PAC-Bayesian framework. These bounds assume a prior measure over the expansion coefficients in the data-dependent kernel expansion and bound the average prediction error uniformly over subsets of the space of expansion coefficients.

Kernel Methods for Measuring Independence. Gretton, Arthur; Herbrich, Ralf; Smola, Alexander J; Bousquet, Olivier; Schölkopf, Bernhard in *Journal of Machine Learning Research* (2005). **6** 2075–2129.

We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis.

Kernel Constrained Covariance for Dependence Measurement. Gretton, Arthur; Smola, Alexander; Bousquet, Olivier; Herbrich, Ralf; Belitski, Andrei; Augath, Mark; Murayama, Yusuke; Pauls, Jon; Schölkopf, Bernhard; Logothetis, Nikos (2005). 112–119.

We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence, with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no independence test exists that can distinguish dependent and independent random variables in all circumstances. Dependent random variables can result in a COCO which is arbitrarily close to zero when the source densities are highly non-smooth. All current kernel-based independence tests share this behaviour. We demonstrate exponential convergence between the population and empirical COCO. Finally, we use COCO as a measure of joint neural activity between voxels in MRI recordings of the macaque monkey, and compare the results to the mutual information and the correlation. We also show the effect of removing breathing artefacts from the MRI recording.

*On Gaussian Expectation Propagation* Herbrich, Ralf (2005).

In this short note we will re-derive the Gaussian expectation propagation (Gaussian EP) algorithm as presented in Minka (2001) and demonstrate an application of Gaussian EP to approximate multi-dimensional truncated Gaussians.

*Minimising the Kullback-Leibler Divergence* Herbrich, Ralf (2005).

In this note we show that minimising the Kullback--Leibler divergence over a family in the class of exponential distributions is achieved by matching the expected natural statistic. We will also give an explicit update formula for distributions with only one likelihood term.

The Structure of Version Space. Herbrich, Ralf; Graepel, Thore; Williamson, Robert C in *Innovations in Machine Learning: Theory and Applications* (2005). 257–274.

We investigate the generalisation performance of consistent classifiers, i.e. classifiers that are contained in the so-called version space, both from a theoretical and experimental angle. In contrast to classical VC analysis - where no single classifier within version space is singled out on grounds of a generalisation error bound - the data dependent structural risk minimisation framework suggests that there exists one particular classifier that is to be preferred because it minimises the generalisation error bound. This is usually taken to provide a theoretical justification for learning algorithms such as the well known support vector machine. A reinterpretation of a recent PAC-Bayesian result, however, reveals that given a suitably chosen hypothesis space there exists a large fraction of classifiers with small generalisation error although we cannot readily identify them for a specific learning task. In the particular case of linear classifiers we show that classifiers found by the classical perceptron algorithm have guarantees bounded by the size of version space. These results are complemented with an empirical study for kernel classifiers on the task of handwritten digit recognition which demonstrates that even classifiers with a small margin may exhibit excellent generalisation. In order to perform this analysis we introduce the kernel Gibbs sampler - an algorithm which can be used to sample consistent kernel classifiers.