TrueSkill Through Time: Revisiting the History of Chess. Dangauthier, Pierre; Herbrich, Ralf; Minka, Tom; Graepel, Thore (2007). 931–938.
We extend the Bayesian skill rating system TrueSkill to infer entire time series of skills of players by smoothing through time instead of filtering. The skill of each participating player, say, every year is represented by a latent skill variable which is affected by the relevant game outcomes that year, and coupled with the skill variables of the previous and subsequent year. Inference in the resulting factor graph is carried out by approximate message passing (EP) along the time series of skills. As before the system tracks the uncertainty about player skills, explicitly models draws, can deal with any number of competing entities and can infer individual skills from team results. We extend the system to estimate player-specific draw margins. Based on these models we present an analysis of the skill curves of important players in the history of chess over the past 150 years. Results include plots of players' lifetime skill development as well as the ability to compare the skills of different players across time. Our results indicate that a) the overall playing strength has increased over the past 150 years, and b) that modelling a player's ability to force a draw provides significantly better predictive power.
Structure From Failure. Herbrich, Ralf; Graepel, Thore; Murphy, Brendan (2007).
We investigate the problem of learning the dependencies among servers in large networks based on failure patterns in their up-time behaviour. We model up-times in terms of exponential distributions whose inverse lifetime parameters lmay vary with the state of other servers. Based on a conjugate Gamma prior over inverse lifetimes we identify the most likely network configuration given that any node has at most one parent. The method can be viewed as a special case of learning a continuous time Bayesian network. Our approach enables us to easily incorporate existing expert prior knowledge. Furthermore our method enjoys advantages over a state-of-the-art rule-based approach. We validate the approach on synthetic data and apply it to five year data for a set of over 500 servers at a server farm of a major Microsoft web site.
Learning to Solve Game Trees. Stern, David; Herbrich, Ralf; Graepel, Thore (2007). 839–846.
We apply probability theory to the task of proving whether a goal can be achieved by a player in an adversarial game. Such problems are solved by searching the game tree. We view this tree as a graphical model which yields a distribution over the (Boolean) outcome of the search before it terminates. Experiments show that a best-first search algorithm guided by this distribution explores a similar number of nodes as Proof-Number Search to solve Go problems. Knowledge is incorporated into search by using domain-specific models to provide prior distributions over the values of leaf nodes of the game tree. These are surrogate for the unexplored parts of the tree. The parameters of these models can be learned from previous search trees. Experiments on Go show that the speed of problem solving can be increased by orders of magnitude by this technique but care must be taken to avoid over-fitting.