Prof. Dr. Christoph Lippert

Florian Borchert, M.Sc.

Research Assistant, PhD Candidate

Phone:+49 (331) 5509-4839
Fax:+49 (331) 5509-163
Room:G-2.2.16 (Campus III)
Personal Website:florianborchert.de

Research Interests

  • Clinical Natural Language Processing
  • Information Extraction
  • Medical Evidence Synthesis & Clinical Guidelines

Awards & Competitions



  • 1.
    Bressem, K.K., Papaioannou, J.-M., Grundmann, P., Borchert, F., Adams, L.C., Liu, L., Busch, F., Xu, L., Loyen, J.P., Niehues, S.M., Augustin, M., Grosser, L., Makowski, M.R., Aerts, H.J., Löser, A.: medBERT.de: A Comprehensive German BERT Model for the Medical Domain. Expert Systems with Applications. 121598 (2024).


  • 1.
    Borchert, F., Llorca, I., Roller, R., Arnrich, B., Schapranow, M.-P.: xMEN: A Modular Toolkit for Cross-Lingual Medical Entity Normalization. arXiv preprint arXiv:2310.11275. (2023).
  • 2.
    Borchert, F., Llorca, I., Schapranow, M.-P.: HPI-DHC @ BC8 SympTEMIST Track: Detection and Normalization of Symptom Mentions with SpanMarker and xMEN. In: Islamaj, R., Arighi, C., Campbell, I., Gonzalez-Hernandez, G., Hirschman, L., Krallinger, M., Lima-López, S., Weissenbacher, D., en Lu, Z. (reds.) Proceedings of the BioCreative VIII Challenge and Workshop: Curation and Evaluation in the era of Generative Models. , New Orleans, LA (2023).
  • 3.
    Borchert, F., Llorca, I., Schapranow, M.-P.: Cross-Lingual Candidate Retrieval and Re-ranking for Biomedical Entity Linking. In: Arampatzis, A., Kanoulas, E., Tsikrika, T., Vrochidis, S., Giachanou, A., Li, D., Aliannejadi, M., Vlachos, M., Faggioli, G., en Ferro, N. (reds.) Experimental IR Meets Multilinguality, Multimodality, and Interaction. bll. 135–147. Springer Nature Switzerland, Cham (2023).
  • 4.
    Fox, S., Preiß, M., Borchert, F., Rasheed, A., Schapranow, M.-P.: HPIDHC at NTCIR-17 MedNLP-SC: Data Augmentation and Ensemble Learning for Multilingual Adverse Drug Event Detection. NTCIR 17 Conference: Proceedings of the 17th NTCIR Conference on Evaluation of Information Access Technologies. bll. 185–192. , Tokyo, Japan (2023).
  • 5.
    Hugo, J., Ibing, S., Borchert, F., Sachs, J.P., Cho, J., Ungaro, R.C., Böttinger, E.P.: Machine Learning Based Prediction of Incident Cases of Crohn’s Disease Using Electronic Health Records from a Large Integrated Health System. In: Juarez, J.M., Marcos, M., Stiglic, G., en Tucker, A. (reds.) Artificial Intelligence in Medicine. bll. 293–302. Springer Nature Switzerland, Cham (2023).
  • 6.
    Kämmer, N., and Borchert, F., and Winkler, S., and de Melo, G., and Schapranow, M.-P.: Resolving Elliptical Compounds in German Medical Text. The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks. bll. 292–305. Association for Computational Linguistics, Toronto, Canada (2023).
  • 7.
    Ladas, N., Borchert, F., Franz, S., Rehberg, A., Strauch, N., Sommer, K.K., Marschollek, M., Gietzelt, M.: Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts. Health Informatics Journal. 29, 14604582231164696 (2023).
  • 8.
    Llorca, I., Borchert, F., Schapranow, M.-P.: A Meta-dataset of German Medical Corpora: Harmonization of Annotations and Cross-corpus NER Evaluation. Proceedings of the 5th Clinical Natural Language Processing Workshop. bll. 171–181. Association for Computational Linguistics, Toronto, Canada (2023).
  • 9.
    Richter-Pechanski, P., Wiesenbach, P., Schwab, D.M., Kiriakou, C., He, M., Allers, M.M., Tiefenbacher, A.S., Kunz, N., Martynova, A., Spiller, N., Mierisch, J., Borchert, F., Schwind, C., Frey, N., Dieterich, C., Geis, N.A.: A Distributable German Clinical Corpus Containing Cardiovascular Clinical Routine Doctor’s Letters. Scientific Data. 10, 207 (2023).
  • 10.
    Schapranow, M.-P., Borchert, F., Bougatf, N., Hund, H., Eils, R.: Software-Tool Support for Collaborative, Virtual, Multi-Site Molecular Tumor Boards. SN Computer Science. 4, 358 (2023).
  • 11.
    Schmidt, L., Ibing, S., Borchert, F., Hugo, J., Marshall, A., Peraza, J., Cho, J.H., Böttinger, E.P., Ungaro, R.C.: Extraction of Crohn’s Disease Clinical Phenotypes from Clinical Text Using Natural Language Processing. medRxiv. (2023).
  • 12.
    Steckhan, N., Ring, R., Borchert, F., Koppold, D.A.: Triangulation of Questionnaires, Qualitative Data and Natural Language Processing: A Differential Approach to Religious Bahá’í Fasting in Germany. Journal of Religion and Health. (2023).
  • 13.
    Steinwand, S., Borchert, F., Winkler, S., Schapranow, M.-P.: GGTWEAK: Gene Tagging with Weak Supervision for German Clinical Text. In: Juarez, J.M., Marcos, M., Stiglic, G., en Tucker, A. (reds.) Artificial Intelligence in Medicine. bll. 183–192. Springer Nature Switzerland, Cham (2023).


  • 1.
    Borchert, F., Lohr, C., Modersohn, L., Witt, J., Langer, T., Follmann, M., Gietzelt, M., Arnrich, B., Hahn, U., Schapranow, M.-P.: GGPONC 2.0 - The German Clinical Guideline Corpus for Oncology: Curation Workflow, Annotation Policy, Baseline NER Taggers. Proceedings of the Language Resources and Evaluation Conference. bll. 3650–3660. European Language Resources Association, Marseille, France (2022).
  • 2.
    Borchert, F., Schapranow, M.-P.: HPI-DHC @ BioASQ DisTEMIST: Spanish Biomedical Entity Linking with Pre-trained Transformers and Cross-lingual Candidate Retrieval. Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum. bll. 244–258. , Bologna, Italy (2022).
  • 3.
    Henkenjohann, R., Bergner, B., Borchert, F., Bougatf, N., Hund, H., Eils, R., Schapranow, M.-P.: An Engineering Approach towards Multi-Site Virtual Molecular Tumor Board Software Support. In: Pissaloux, E., Papadopoulos, G., Achilleos, A., en Velázquez, R. (reds.) ICT for Health, Accessibility and Wellbeing. IHAW 2021. bll. 156–170. Springer, Cham (2022).


  • 1.
    Borchert, F., Meister, L., Langer, T., Follmann, M., Arnrich, B., Schapranow, M.-P.: Controversial Trials First: Identifying Disagreement Between Clinical Guidelines and New Evidence. AMIA Annual Symposium Proceedings. bll. 237–246. American Medical Informatics Association (2021).
  • 2.
    Borchert, F., Mock, A., Tomczak, A., Hügel, J., Alkarkoukly, S., Knurr, A., Volckmar, A.-L., Stenzinger, A., Schirmacher, P., Debus, J., Jäger, D., Longerich, T., Fröhling, S., Eils, R., Bougatf, N., Sax, U., Schapranow, M.-P.: Knowledge bases and software support for variant interpretation in precision oncology. Briefings in Bioinformatics. 22, (2021).
  • 3.
    Rasheed, A., Borchert, F., Kohlmeyer, L., Henkenjohann, R., Schapranow, M.-P.: A Comparison of Concept Embeddings for German Clinical Corpora. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). bll. 2314–2321 (2021).


  • 1.
    Borchert, F., Lohr, C., Modersohn, L., Hahn, U., Langer, T., Wenzel, G., Follmann, M., Schapranow, M.-P.: "Herr Doktor, verstehen Sie mich?“: Wie lernende Systeme helfen medizinische Fachsprache zu verstehen und welche Rolle klinische Leitlinien dabei spielen. gesundhyte.de: Das Magazin für Digitale Gesundheit in Deutschland. 13, 19–22 (2020).
  • 2.
    Borchert, F., Lohr, C., Modersohn, L., Langer, T., Follmann, M., Sachs, J.P., Hahn, U., Schapranow, M.-P.: GGPONC: A Corpus of German Medical Text with Rich Metadata Based on Clinical Practice Guidelines. Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis. bll. 38–48. Association for Computational Linguistics, Online (2020).