
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Workload-Driven Data Placement for Tierless In-Memory
Database Systems

Ben Hurdelhey1, Marcel Weisgut2, Martin Boissier3

Abstract: High main memory consumption is a significant cost factor for in-memory database
systems. Tiering, i.e., placing parts of the data on memory or storage devices other than DRAM,
reduces the main memory footprint. A controlled data placement can assign rarely accessed data to
slow devices while frequently used data remains on fast devices, such as main memory, to maintain
acceptable query latencies. We present an automatic data placement decision system for the in-memory
database Hyrise. The system organizes the memory and storage devices in a tierless pool, with no fixed
device class categorization or performance order. The system supports data placement use cases, such
as minimizing end-to-end query latencies and making cost-optimal purchase recommendations in
cloud environments. In this paper, we introduce an efficient calibration process to derive cost models
for various storage devices. To determine data placements, we introduce a linear programming-based
approach, which yields optimal configurations, and an efficient heuristic. With a set of main memory
and SSD devices, we can reduce the main memory consumption for base table data of the TPC-DS
benchmark by 74 percent when accepting a workload latency increase of 52 percent. In a comparison of
data placement algorithms and cost models, we find that simplistic algorithms (e.g., greedy algorithms)
can present viable alternatives to optimal linear programming algorithms, especially under cost
prediction inaccuracies.

Keywords: Tiering; Data Placement; In-Memory Database Systems; Linear Programming; Cost
Models

1 Data Placement for In-Memory Database Systems

In contrast to traditional disk-based database management system (DBMS), in-memory
database management systems (IMDBMSs) store their data in dynamic random-access
memory (DRAM) instead of comparatively slow hard disk drives (HDDs) or solid state
drives (SSDs). Holding all data in main memory allows for faster query processing, which
in turn facilitates business applications, for example, by flexibly computing aggregates
on-the-fly [ÖTT17, Pl14]. However, IMDBMSs inherently come with high main memory
consumption, which can result in increased operating costs for pure in-memory database
systems [Lo19]. The continuously growing amounts of data aggravate this problem,
increasing the need for larger-than-memory DBMS [Ma16]. Furthermore, DRAM capacity
growth is slowing down and is expected to reach an upper limit [Ma02, Sh20].
Concluding, we argue that it can be desirable to reduce the main memory consumption
of IMDBMS. Tiering, i.e., placing selected data on other memory/storage devices with a
lower cost per dollar, is a viable strategy to reduce the DRAM consumption [Du16]. When
1 Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Deutschland ben.hurdelhey@student.hpi.de
2 Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Deutschland marcel.weisgut@hpi.de
3 Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Deutschland martin.boissier@hpi.de

cba doi:10.18420/BTW2023-02

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 47

mailto:ben.hurdelhey@student.hpi.de
mailto:marcel.weisgut@hpi.de
mailto:martin.boissier@hpi.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-02

2 Hurdelhey, Weisgut, and Boissier

moving data from DRAM to devices such as persistent memory (PMem) or SSD, we have
to keep in mind that these memory/storage devices offer worse performance characteristics
than DRAM, i.e., higher latencies and lower bandwidths. Moving the entire stored database
to another device could therefore cause substantial data access cost increases and, thus,
increased query latencies. However, data access in database queries is often highly skewed
because some part of the data is frequently accessed while another part is only rarely or
never queried. This skew is demonstrated by analyses of production database systems by
Höppner et al. [HWR14, p. 68], Dreseler [Dr22, p. 12], and Boissier et al. [BSU18, p. 210].
With tiering, we can exploit data access skew by preferably storing the infrequently accessed
data on the slower but less expensive memory/storage devices. The critical challenge is
determining a data placement [Dr22, Vo20], i.e., an assignment of data to devices, to
minimize the runtime performance impacts while reducing the DRAM usage. We refer to
the series of instructions that determines a data placement as the placement algorithm.
We make the following contributions to advance automatic data placement for IMDBMS.

• We propose a placement system for columnar relational in-memory database systems
with horizontally partitioned tables. The system is based on linear programming (LP)
algorithms and supports multi-constraint multi-device data placement decisions before
and after the hardware purchase (Sect. 2). We exemplarily implemented the placement
selection system for the open-source in-memory research database Hyrise [Dr19].

• For efficient and accurate placement cost prediction, we propose and evaluate a
calibrated cost model based on access tracking data, which allows for efficient cost
prediction (Sect. 3).

• We propose and compare multiple placement algorithms and determine a Pareto-
optimal trade-off between resource efficiency and result quality, demonstrating that
simple algorithms (e.g., Greedy, Knapsack) can be viable alternatives to optimal
linear programming algorithms (Sect. 4).

2 Automatic Placement Decisions

Our data placement approach has the following general characteristics.
• The data placement module works autonomously. Manual database administration is

laborious and error-prone [Ma21]. Placement decisions can be complex, and it can
be infeasible to manually determine the optimal data placement.

• While it is possible to place temporary data structures used during query processing
on secondary devices (i.e., devices other than DRAM) [Da21], we focus on evicting
append-only data structures of the database system’s base tables. Eviction of temporary
data structures is required for database operator execution when an operator requires
more DRAM than available.

• Our goal is to move infrequently accessed data to slower devices to maintain
acceptable query latencies. The workload of the database, i.e., the queries being
run, determines the access characteristics of the stored data. We incorporate access
tracking information. Thus, our approach is workload-driven.

48 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 3

• While some of the related research has considered only two de-
vices [BSU18, Dr22, La22], we examine data placement techniques that support an
arbitrary number of devices. In addition, we organize the devices in a tierless pool,
with no fixed categorization or performance ordering of the devices, similar to [Vo20].
Contrarily to the traditional memory and storage hierarchy shown in Fig. 1a, we regard
the devices as separate entities with different access characteristics, as illustrated
in Fig. 1b. The term tiering is widely used and understood [BSU18, Dr22, Du16].
However, we use the term devices instead of tiers to not imply any fixed categorization
or ordering of the devices by their price or access performance4.

L3 Cache

DRAM

SSD

HDD

...

...

Pr
ic

e,
 B

an
dw

id
th

C
ap

ac
ity

, L
at

en
cy

(a) Traditional memory and storage hierarchy.
Latency

Ba
nd

w
id

th

L3
Cache

DRAM

Low-latency
SSD

Multi-SSD RAID 0

HDD

AWS S3

(b) Bandwidth and latency of exemplary de-
vice classes.

Fig. 1: Tierless device pool concept. Device characteristics based on [Am21, Ap19, Dr22, Wu21] and
fio [Ax22] measurements for the devices in Sect. 2.2 as specified at https://github.com/benrobby/
hyrise-data-placement#fio.

2.1 Data Placement in Hyrise

We propose a data placement selection module for Hyrise. The module’s main objective
is to support placement algorithm and cost model experiments. The placement module
consists of a plugin for Hyrise, which interacts with the database system, and a standalone
module to determine the data placements5.
Hyrise is a columnar in-memory database system. As described by Dreseler et al. [Dr19,
p. 316], tables are horizontally partitioned into chunks, whereas chunks are mutable as long
as data is added and become immutable and read-optimized once their capacity is reached.
With the default chunk size used in this work, a single chunk stores 65 535 tuples. Each
chunk is vertically partitioned into segments, whereas each segment corresponds to one
fraction of a column of the table. Each segment can be encoded independently. Dictionary
encoding is the default encoding in Hyrise, which we also use in this work. Hyrise uses

4 The Encyclopædia Britannica defines a tier as “a row or layer of things that is above another row or layer”. The
definition can be found at https://www.britannica.com/dictionary/tier

5 More information on the placement selection module for Hyrise can be found at https://github.com/benrobby/
hyrise-data-placement.

Workload-Driven Data Placement for Tierless In-Memory Database Systems 49

https://github.com/benrobby/hyrise-data-placement#fio
https://github.com/benrobby/hyrise-data-placement#fio
https://www.britannica.com/dictionary/tier
https://github.com/benrobby/hyrise-data-placement
https://github.com/benrobby/hyrise-data-placement

4 Hurdelhey, Weisgut, and Boissier

multi-version concurrency control (MVCC) to isolate concurrent transactions. Instead of
updating a row, a new row is written, and the old row is marked as invalid [Dr19, p. 320].
The placement granularity defines the data unit at which we make placement decisions
and move data between tiers. We make placement decisions at a segment granularity to
capture both unused columns and vertical skew with multi-dimensional access tracking and
placement decisions [Dr22, pp. 97–100].
Access tracking allows observing the access frequencies of stored data. This information
is crucial for deciding on which device a specific part of the data is to be stored on.
Corresponding to the segment granularity of the placement decisions, we track data accesses
for each individual segment using Hyrise’s per-segment access counters [Dr22, pp. 102–104].
For each segment, Hyrise maintains access counters for sequential, monotonic, random,
and point access patterns [Dr22, p. 92].
Hyrise uses C++17’s polymorphic memory resources (PMRs) to encapsulate the alloca-
tion behavior on different devices and add eviction capabilities to arbitrary data struc-
tures [Dr22, p. 79-81]. We supply custom memory resources to allocate and deallocate
memory on given devices. This approach is based on an existing implementation for
Hyrise [We22]. The memory resources use jemalloc to manage the memory allocations and
deallocations. In particular, the resource for block devices supplies hooks (i.e., function
pointers) to jemalloc to control the underlying memory allocations of the memory allocator.
These hooks allocate memory from memory-mapped UMap regions corresponding to
one file on the given device (e.g., on an SSD). UMap [Pe19] is a user-space page fault
handler that allows for configurations such as adjusting the page size or buffer size. Limiting
the memory mapped buffer size gives us control over UMap’s eviction behavior. For
our experiments, restricting the memory mapped buffer size is crucial so a device does
not degenerate to a buffer that can hold all stored data in DRAM. Therefore, we limit
the UMap buffer size to 250 MB. Previous research found the optimum page size to be
workload-dependent [We22, p. 1205]. However, we use a fixed page size of 128 KiB as this
configuration is not our research focus. With the segment granularity, we migrate given
segments between devices during the runtime of the DBMS. The database system might
perform work during the migration and even access the exact segment currently being
migrated. For this reason, we first copy the segment to the new device and then replace the
old segment in the chunk with the new segment using an std::atomic_store [Dr22, p. 83].

2.2 Multi-Objective Data Placement with Linear Programming

In modern cloud environments, traditional on-premise assumptions regarding the device
purchase no longer apply. For example, the device hardware is no longer purchased and
used throughout the entire device lifespan. Instead, cloud environments allow users to
easily migrate between different compute and storage hardware6 with pay-as-you-go pricing
models. This ability to flexibly reconfigure the used devices allows for new data placement

6 For example, virtual machines can be rented and migrated on Amazon AWS (https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/ec2-instance-resize.html).

50 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html

Automatic Data Placement 5

applications throughout the entire DBMS life-cycle. Our placement selection module
supports the following three use cases, which we refer to as objectives. For objective O1, we
assume the devices are already purchased, and their respective byte capacities constrain the
data placement. The goal is to achieve the best possible query runtime performance within
the memory budget. Objective O2 occurs during the purchase phase of database deployment.
This objective aims to determine purchase recommendations that satisfy a latency constraint
for the workload runtime while minimizing the monetary costs for the memory and storage
devices. Objective O3 aims to determine purchase recommendations that minimize the
predicted query runtimes given a fixed monetary budget for memory/storage devices. We
formulate these placement selection problems as linear programming models.

Objective O1: Byte Capacity Constrained Placement Configurations The first objective
that our solution supports is minimizing the end-to-end runtime of the database system for a
given set of devices, each with a fixed byte capacity. The task of the placement selection
algorithm is to determine values for the decision variable 𝑥𝑡 ,𝑎, 𝑝,𝑑 , which corresponds to
assigning a segment in table 𝑡, attribute 𝑎, partition 𝑝, to a device 𝑑.𝑇 and 𝐷 are the numbers
of tables and devices. 𝐴 and 𝑃 are the maximum numbers of attributes and partitions over
all tables. For these numeric parameters, we use the notation 𝑡 ∈ 𝑇 , which is equivalent to
𝑡 = 1, ..., 𝑇 , for improved readability. For example, for three devices, 𝑑 ∈ 𝐷 ≡ 𝑑 ∈ {1, 2, 3}.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥𝑡,𝑎,𝑝,𝑑∈{0,1}𝑇×𝐴×𝑃×𝐷

∑︁
𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑐𝑡 ,𝑎, 𝑝,𝑑 (1)

𝑠.𝑡.
∑︁

𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑠𝑡 ,𝑎, 𝑝 ≤ 𝑏𝑑 ∀𝑑 ∈ 𝐷 (2)

(
∑︁
𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑) = 𝑖𝑡 ,𝑎, 𝑝 ∀𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴, 𝑝 ∈ 𝑃 (3)

The objective (1) of the integer linear programming (ILP) model is to minimize the predicted
costs 𝑐𝑡 ,𝑎, 𝑝,𝑑 of all segment assignments. Depending on the cost model’s accuracy, the
objective value can become an accurate runtime prediction for data placements. The LP
objective is subject to two constraints. The constraint (2) ensures that the capacity of each
device 𝑏𝑑 is not exceeded by the accumulated segment size 𝑠𝑡 ,𝑎, 𝑝 of the segments assigned
to it. Furthermore, the constraint (3) requires the model to assign each segment to exactly
one device: 𝑖𝑡 ,𝑎, 𝑝 ∈ {0, 1} is a binary function guaranteeing that only existing segments
(due to some tables having more attributes than other tables) will be assigned to a device.
Contrarily, non-existing segments will not be assigned to any device.

Objective O2: Latency Constrained Buying Recommendations Objective O2 assumes
that the user, i.e., the database administrator, wants to pose latency constraints on the
database system and spend as little money as possible on devices to satisfy these constraints.
In our case, we select the latency constraint that the cumulative runtime of all queries in a

Workload-Driven Data Placement for Tierless In-Memory Database Systems 51

6 Hurdelhey, Weisgut, and Boissier

given workload must not exceed a given maximum latency. The algorithm minimizes the
dollar costs for the devices required to comply with the given latency constraints. For this,
the algorithm determines the hypothetical data placement that satisfies the given latency
constraint. In the resulting data placement, the memory or storage usage per device will
become the buying recommendation for the memory/storage devices.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥𝑡,𝑎,𝑝,𝑑∈{0,1}𝑇×𝐴×𝑃×𝐷

∑︁
𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑠𝑡 ,𝑎, 𝑝 · 𝑔𝑑 (4)

𝑠.𝑡.
∑︁

𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑐𝑡 ,𝑎, 𝑝,𝑑 ≤ 𝑜 (5)

(
∑︁
𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑) = 𝑖𝑡 ,𝑎, 𝑝 ∀𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴, 𝑝 ∈ 𝑃 (6)

The ILP model is similar to the O1 model. We introduce the maximum runtime cost value 𝑜
and the variable 𝑔𝑑 for the cost of a device 𝑑 in dollars per byte. The objective (4) of this ILP
model is to minimize the total dollar cost of the data placement. The model calculates the
dollar cost for a specific data placement using the segment sizes in bytes and the respective
device prices in dollars per byte. The constraint (5) calculates the total predicted runtime
cost value and poses an upper limit to this cost.
Our cost model’s runtime predictions are inaccurate. Therefore, we infer the maximum
runtime cost value 𝑜 from a given maximum end-to-end latency using experimentally-
determined linear interpolation. Calculating the parameters for this formula requires
measurements of end-to-end database execution times, which can be slow. Furthermore, a
recalculation is necessary for every database and hardware change. For these reasons, we
consider improving the underlying cost model to output more accurate end-to-end runtime
predictions as the critical challenge.

Objective O3: Dollar-Budget Constrained Buying Recommendations The third ob-
jective serves the use case that a user has a certain amount of money to spend on their
infrastructure. While allocating more central processing unit (CPU) resources can be a
strategy to reduce query runtimes, we focus on a given budget for memory and storage
devices. With their monetary budget 𝑚, the user wants to buy the devices that allow for the
best runtime performance. The parameter 𝑔𝑑 stores the cost of a device 𝑑 in dollars per byte.

52 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 7

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥𝑡,𝑎,𝑝,𝑑∈{0,1}𝑇×𝐴×𝑃×𝐷

∑︁
𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑐𝑡 ,𝑎, 𝑝,𝑑 (7)

𝑠.𝑡. (
∑︁

𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃,𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑠𝑡 ,𝑎, 𝑝 · 𝑔𝑑) ≤ 𝑚 (8)

(
∑︁
𝑑∈𝐷

𝑥𝑡 ,𝑎, 𝑝,𝑑) = 𝑖𝑡 ,𝑎, 𝑝 ∀𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴, 𝑝 ∈ 𝑃

(9)

The objective (7) of this ILP model is to minimize the predicted runtime costs of the data
placement. The objective is subject to two constraints. The constraint (8) asserts that the
data assignment to the devices does not exceed the monetary budget. Furthermore, this ILP
model also includes constraint (9) that forces segments to be assigned to exactly one device.
In the above model for objective O3, we considered the dollar costs of the devices as a
continuous price in dollars per used byte. This assumption can hold for fine-granular storage
rentals from cloud service providers. However, we are limited to a discrete set of available
byte capacities when purchasing raw storage device hardware. To support discrete device
capacities, we replace the constraint (8) with the constraint (11). For each device 𝑑, we
assume a given list of length 𝐽 that is sorted in ascending order. The list contains the
discrete device capacities 𝑒𝑑, 𝑗 where 𝑗 = 1..𝐽 indexes the 𝐽 distinct available capacities.
Furthermore, equation (10) introduces a variable 𝑠𝑥,𝑑 for the size in bytes of the segments
assigned to a device 𝑑 according to the values of the decision variables 𝑥𝑡 ,𝑎, 𝑝,𝑑 .

𝑠𝑥,𝑑 =
∑︁

𝑡∈𝑇,𝑎∈𝐴,
𝑝∈𝑃

𝑥𝑡 ,𝑎, 𝑝,𝑑 · 𝑠𝑡 ,𝑎, 𝑝 (10)

(
∑︁
𝑑∈𝐷

𝑔𝑑 · 𝑎𝑟𝑔𝑚𝑖𝑛𝑒𝑑, 𝑗 ,𝑠𝑥,𝑑≤𝑒𝑑, 𝑗 𝑒𝑑, 𝑗) ≤ 𝑚 (11)

The formalization above contains a non-linearity in the 𝑎𝑟𝑔𝑚𝑖𝑛 expression (11) as it is not
a linear combination of its input variables. Therefore, we cannot solve this model in the
presented form using linear solvers. However, the non-linearity can be substituted by an
equivalent formulation in linear terms.

Evaluation Setup We conduct our measurements on a machine with two AMD EPYC
7F72 CPUs, each with 24 physical cores, 48 threads, a 192 MB shared L3 cache, and 256 GB
of DDR4 memory with a theoretical per-socket memory bandwidth of 204.8 GB/s [Ad21].
Per CPU, the DRAM is distributed across eight Samsung M393A4G43AB3 dual in-line
memory modules (DIMMs), each with a size of 32 GB. We pin processes and memory to a
single node using numactl for our measurements on this multi-socket system. The machine

Workload-Driven Data Placement for Tierless In-Memory Database Systems 53

8 Hurdelhey, Weisgut, and Boissier

runs Ubuntu 22.04 LTS with the Linux kernel 5.15.0-41-generic. We compile Hyrise with
GCC 10.3 and use Python 3.10.4 to execute the placement selection module. We configure
Hyrise to use all available cores on the given non-uniform memory access (NUMA) node.
For our measurements, we set the number of cores that Hyrise can use to 24, which is the
number of available physical cores on one NUMA node of our test system. Furthermore, we
set the number of clients to eight. Each client corresponds to one stream of queries we send to
the database system concurrently. Moreover, we randomize the order of the queries for each
client to utilize the database’s resources evenly. In combination, our parameter values for the
number of cores and clients allow us to measure the multi-threaded database performance.
To evaluate the query latencies, we execute queries of the join order benchmark (JOB), TPC
Benchmark DS (TPC-DS), and TPC Benchmark H (TPC-H) benchmarks. Unless specified
otherwise, we set the scale factors of TPC-H and TPC-DS to ten to obtain a data size that
exceeds the benchmark machine’s cache sizes. The JOB does not have a scale factor.
In our experiments, we use the following three devices: DRAM, a redundant array of
independent disks (RAID) of two Micron 7450 NVM Express (NVMe) SSDs (SSD_BAND),
and a low-latency Intel Optane DC Series SSD (SSD_LAT). The SSD RAID is of type
0. SSD_LAT has a lower access latency, while SSD_BAND offers higher bandwidth.
In measurements with the fio utility [Ax22] and the Intel Memory Latency Checker
(MLC) [Vi21], the devices DRAM, SSD_BAND, and SSD_LAT had a read latency of 130,
70 000, and 12 000 nanoseconds, respectively. Furthermore, the sequential multi-core read
bandwidth was 141.3, 12.5, and 2.4 GB per second. As a baseline, we also investigated a
second set of devices consisting of DRAM, an SSD, and an HDD. We refer to this set as the
ordered device set, opposed to the tierless device set. These devices have a clear ordering
by their access performance.
We use the commercially available Gurobi solver [Gu21a] to solve the specified LP models.
Previous research has found this solver to offer good runtime performance for similar
applications [Bo22, p. 785] compared to other solvers, such as SCIP [Ga20] or Cbc [Lo03].
The optimality gap [Gu21b] is the maximum accepted gap between the objective value of
the solution that the solver terminates with and the optimal objective value. We set this
optimality gap to 1% as we experienced solver timeouts for smaller values. Furthermore, we
limit the maximum execution time to 500 seconds. Finally, we set the number of threads to
the number of cores of the test machine, i.e., 24 threads. We formulate the LP models using
Pyomo [By21, HWW11], a Python-based open-source optimization modeling language
that allows for interchangeable solvers.

Exemplary Placement Decisions Fig. 2 shows exemplary placement decisions of our
system for the TPC-H benchmark using the three objectives O1, O2, and O3. The placement
behavior for the JOB and TPC-DS benchmark shows similar patterns. For each given
constraint (e.g., DRAM capacity, latency budget, dollar budget) that we vary along the
x-axis, the plots display the percentage of data stored on the respective devices on the y-axis.
Fig. 2a shows the objective O1 placements. For each DRAM budget, the algorithm uses
all available DRAM as it allows for the lowest predicted workload runtime. We define the

54 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 9

(a) O1 device usages. The DRAM
budget is varied between zero and
ten GB in 11 steps.

(b) O2 purchase recommenda-
tions. The latency budget is var-
ied between 9 and 132 seconds
in 50 steps.

(c) O3 purchase recommendations for dis-
crete device sizes. The dollar budget is varied
between 241 and 6436 dollars in 50 steps.

Fig. 2: Exemplary Data Placements for objective O1, O2, and O3 for the TPC-H benchmark with
scale factor ten. TPC-H scale factor five for the O2 purchase recommendations.

workload runtime as the runtime required to execute all queries of a workload (e.g., all
TPC-H queries) once. For a DRAM budget of zero GB, most segments are assigned to
SSD_LAT while SSD_BAND holds two GB of data. The latency-optimized SSD_LAT
holds the segments with predominately random accesses, while SSD_BAND holds segments
that are frequently accessed sequentially. In a comparison between the tierless device set
and the alternative ordered device set, we found that our placement system can leverage
the tierless property adequately. Fig. 2b shows the placements for objective O2. For the
minimum latency budget, approximately 45 percent of the data is stored in DRAM. In
comparison, the remaining 55 percent of data are unused segments that can be stored on
SSD_BAND without affecting the workload latency. For the JOB and TPC-DS benchmark,
25 and 49 percent of the data is unused, respectively. In our algorithm, a post processing
step assigns the unused segments to the least expensive device with available capacity.
Directly implementing this functionality in the LP model by adding a device penalty to the
unused segments’ cost proved infeasible. The device penalty value had to be larger than the
optimality gap but smaller than the minimum cost for used segments. With the minimum
cost for used segments being smaller than the optimality gap in our experiments, this was
not possible. Fig. 2c shows the objective O3 placements for discrete device sizes. With an
increasing dollar budget, the algorithm can gradually afford more device space for faster
devices, such as DRAM. As we artificially limited the available discrete device capacities to
integer GB values (e.g., 1 GB, 2 GB, 3 GB), the algorithm affords the devices in steps. The
less expensive SSD_LAT precedes the DRAM purchase. Interestingly, the DRAM usage is
not monotonically increasing. For a dollar budget of 2000 cents, the model increases the
SSD_LAT usage to two GB while it reduces the DRAM usage from two GB to one GB.
Random access is the dominant access pattern of the segments assigned to SSD_LAT. As
the bandwidth-optimized SSD_BAND has a higher read latency than the other devices,
this decrease in DRAM usage thus allows the model to assign more random access-heavy
segments to other devices than SSD_BAND and minimize the predicted runtime.

Workload-Driven Data Placement for Tierless In-Memory Database Systems 55

10 Hurdelhey, Weisgut, and Boissier

2.3 Dynamic Workloads

We define a workload as dynamic if it has a temporal skew in the queries being run during
its duration. Our system supports these workloads by updating the placement regularly. We
use windowing to collect access tracking information. The system bases the placement
decisions on only the tracked segment accesses that occurred since the last placement update.
In our experiments, we set the window size to two minutes. With these periodic updates,
we successfully adapted the placement to the changing workload and reduced the query
latencies accordingly. However, this reactive approach cannot predict future workloads.
Furthermore, recurring workload changes might cause the placement to oscillate between
multiple configurations, incurring high segment migration costs. Frequent and fast updates
of the data placement are critical to quickly react to workload changes. The update frequency
is limited by the runtime of the placement algorithm and the runtime required to apply a
placement configuration. Thus, dynamic workload support is an application that requires
low-latency placement algorithms, which we investigate in Sect. 4.2.

3 Data Placement Cost Models

We want to investigate how to efficiently estimate data placement effects on query runtime
with sufficient accuracy using simple cost models. For this, we build cost models based on
(i) Hyrise’s segment access counters and (ii) device calibration data.

3.1 Assumptions

All cost models proposed in this work make the following similar underlying assumptions.

I/O-Dominated Workloads Our approach focuses on estimating data access costs. Thus,
we do not directly estimate the costs of operators, such as joins or aggregates, executed
during query processing. However, we indirectly include their costs as these operators might
perform data accesses tracked with Hyrise’s access counters. Similarly to Vogel et al. [Vo20,
p. 2666], we argue that our focus on data access costs might decrease the absolute accuracy
of our runtime predictions. However, the runtime predictions can still be correct in relation
to each other. Nevertheless, even this relative measure is subject to the accuracy of the
data access runtime cost predictions. As an example for input/output (I/O)-focused runtime
predictions, let us consider a workload defined by one query that is executed. For this query,
we assume that the CPU-heavy work in the query’s operators (e.g., building a hash map in
a join operator) is independent of the data access in the operators (e.g., materializing all
values of a position list before building the hash map). The CPU-heavy work then adds a
static overhead that is independent of the data placement of the segments. Therefore, we can
compare the cost estimations of different data placements, and the differences between the
estimates are correct, except for a constant overhead. In general, I/O is often a bottleneck
for modern CPUs [HSY01]. Thus, I/O-dominated workloads are a relevant category of
workloads. We argue that data access costs can be a good approximation for these workloads’
overall query latency performance with the previous reasoning.

56 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 11

Independent Data Placement Decisions In this work, a placement decision for one
segment can be made independently of a placement decision for another segment. While
interactions between placement decisions could be possible, we exclude this case to limit
the complexity of the placement algorithms. Similarly, our cost models make independent
predictions per segment. This simplification allows us to limit the complexity of the cost
models but can lead to inaccuracies. For example, an operator execution might read two
columns in parallel, and its execution time might be determined by the maximum scan time
of both columns. Furthermore, we consider the devices’ access performance characteristics
unaffected by our placement decisions. Similarly to the simplification above, this assumption
allows us to limit the complexity of the data placement algorithms and cost models. To
illustrate where this assumption can fail, let us assume that an operator execution reads
two segments in parallel. If these two segments reside on the same device, the device’s
bandwidth can be impacted, and it could be beneficial to distribute the segments to different
devices. On HDDs, multi-threaded reads can even decrease the read throughput due to
increased seek time [Vo20, p. 2666].

3.2 Cost Model Definition

We propose the calibrated and workload-based cost model C3. Furthermore, we compare
model C3 with previous development iterations C0, C1, and C2. The cost model C3 uses
device calibration data and segment access information to estimate the runtime performance
impact when a segment is assigned to a specific device.

𝑐3
𝑡 ,𝑎, 𝑝,𝑑 =

∑︁
𝛾∈Γ

𝑢𝑑,𝛾, b𝑡,𝑎,𝑝 · ℎ𝑡 ,𝑎, 𝑝,𝛾 ·
𝑠𝑡 ,𝑎, 𝑝

𝑛𝑡 ,𝑎, 𝑝
(12)

Model C3 predicts the runtime cost of assigning a segment in table 𝑡, attribute 𝑎, and
partition 𝑝 to device 𝑑 using the formula in (12). The formula sums over all access patterns
𝛾 ∈ Γ (sequential, monotonic, random, and point). Per access pattern, the model calculates
the cost prediction as a product of the calibration value 𝑢𝑑,𝛾, b𝑡,𝑎,𝑝 , the access counter
ℎ𝑡 ,𝑎, 𝑝,𝛾 for the respective access pattern, and the byte size per value 𝑠𝑡,𝑎,𝑝

𝑛𝑡,𝑎,𝑝
, where 𝑛𝑡 ,𝑎, 𝑝 is

the number of values in a segment. The calibration value 𝑢 takes the parameter b𝑡 ,𝑎, 𝑝 that
yields the segment’s data type. The set of possible values b𝑡 ,𝑎, 𝑝 ∈ Ξ = {𝑠𝑡𝑟𝑖𝑛𝑔¬𝑆𝑆𝑂, 𝑓 𝑙𝑜𝑎𝑡}
contains two data types: non-small string optimization (SSO) strings and floating-point
numbers. Our specialized 𝑠𝑡𝑟𝑖𝑛𝑔¬𝑆𝑆𝑂 calibration reads strings with an average length of 44
bytes, which exceeds the SSO threshold. The float calibration is used as the default for all
other segment data types. SSO is a technique that compilers use to avoid dynamic memory
allocations on the heap and improve data locality. As Hyrise stores the values of string
segments as C++ std::string objects, this optimization applies in Hyrise. If a string’s
size is below the SSO threshold, the content of the string can be stored on the stack in
the string object itself. For example, GCC has an SSO threshold of 15 bytes. Contrarily,
the content of strings that exceed this threshold is stored on the heap, which means that
the string object has to hold a heap pointer to the underlying string buffer. This additional
pointer redirect when reading the string’s content is equivalent to random access, as the

Workload-Driven Data Placement for Tierless In-Memory Database Systems 57

12 Hurdelhey, Weisgut, and Boissier

memory layout of the underlying string buffers is undefined. For strings residing on devices
with poor random access characteristics (i.e., a high read latency), access to string segments
can incur high runtime costs. We experimentally determine the calibration values 𝑢𝑑,𝛾, b𝑡,𝑎,𝑝
by benchmarking a read workload for each combination of access pattern, device, and
data type. For the data type, we consider strings with a length larger than 15 bytes and
floating-point numbers with single precision. However, segments of integer data type showed
the same calibration values in our experiments. The calibration workload reads all values of
a column with an uncompressed total size of 720 MB. Google Benchmark [Go22a] repeats
the measurements until a stable runtime is reached. Between benchmark iterations, random
data is read to flush the UMap cache and the CPU caches, so we do not measure cache
effects. The calibration finishes in less than 90 minutes, though it could be reduced to a
fraction of that by reducing the number of values read without significantly sacrificing
accuracy.

Fig. 3: Device calibration for different access patterns, data types, and devices. Multi-threaded reads
(24 threads) measured on TPC-H data with scale factor ten.

Fig. 3 shows the calibrated runtimes for both data types. The calibrated values are the
read times normalized as nanoseconds to read one byte with the respective access pattern.
For example, the calibrated sequential byte access time for DRAM is 0.011 nanoseconds,
equivalent to a read bandwidth of 90 GB per second. This calibrated DRAM bandwidth is
smaller than the maximum bandwidth measured with Intel MLC of 141.3 GB per second,
demonstrating that the calibration can improve the cost model’s accuracy. We explain this
difference between theoretical and utilized bandwidth with CPU overhead for decoding
and processing the read data. In the calibration data, the low-latency SSD_LAT shows
faster random access speed while SSD_BAND is faster for the remaining access patterns.
For example, for the sequential accesses, the SSD_BAND achieves a bandwidth of 8.25
GB per second, which exceeds the theoretical maximum bandwidth of SSD_LAT by 3.4
times. The calibration not only allows us to distinguish the runtime performance of the
devices but also supplies information about the importance of specific access patterns and
data types. Fig. 3 shows that sequential access allows for the fastest read speed while the
random access pattern has the highest runtime. Previous research showed that the ability to
pre-fetch and cache data significantly influences the runtime performance of random data
accesses [He21, p. 32]. Therefore, data accesses that follow the random and point access
pattern incur the highest runtime. However, in an exemplary TPC-H benchmark run in

58 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 13

Hyrise, 106 as many random accesses as point accesses were recorded. These measured
calibration values thus support the findings of Dreseler [Dr22, p. 120] that random access
runtime performance greatly influences end-to-end database system runtime for Hyrise. The
calibrated runtime for the string data type is significantly higher than for the float data type.
The geometric mean of the string calibration values is 389.6 nanoseconds, which is 20 times
higher than 19.9 nanoseconds, the geometric mean of the float calibration. We explain these
differences with the second pointer indirection required to read non-SSO strings, which is
equivalent to random memory access.
We compare the presented cost model with three iterations shown in (13)-(15). Model C0
does not use calibration data and corresponds to the model proposed by Dreseler [Dr22]
using manually-determined weights 𝑤𝛾 . The superscript number 𝑣 in the cost formula
𝑐𝑣
𝑡,𝑎, 𝑝,𝑑

indicates the cost model version.

𝑐0
𝑡 ,𝑎, 𝑝,𝑑 =

∑︁
𝛾∈Γ

𝑤𝛾 · ℎ𝑡 ,𝑎, 𝑝,𝛾 (13)

𝑐1
𝑡 ,𝑎, 𝑝,𝑑 =

∑︁
𝛾∈Γ

𝑢𝑑,𝛾 · ℎ𝑡 ,𝑎, 𝑝,𝛾 (14)

𝑐2
𝑡 ,𝑎, 𝑝,𝑑 =

∑︁
𝛾∈Γ

𝑢𝑑,𝛾 · ℎ𝑡 ,𝑎, 𝑝,𝛾 ·
𝑠𝑡 ,𝑎, 𝑝

𝑛𝑡 ,𝑎, 𝑝
(15)

Furthermore, we considered extending our cost model C3 with a cache miss rate prediction,
as introduced by Lasch et al. [La22]. However, the proposed function did not model the
CPU cache behavior accurately in our experiments. The maximum segment size in Hyrise
was one order of magnitude smaller than the last level cache size, and thus the predicted
cache miss rate was 0.05 for all segments. Therefore, the authors’ assumption that the cache
miss rate is independent for each single data structure was not met in our application.

3.3 Evaluation

The upper plots in Fig. 4 show the measured workload runtime for data placements
determined with the objective O1 algorithm based on the respective cost model. The
runtimes were measured for the JOB, TPC-DS, and TPC-H benchmark with scale factor
ten and the DRAM capacity is varied between zero GB and full capacity. We consider only
DRAM and SSD_BAND due to the limitations of cost model C0. The data placements
for zero GB DRAM capacity and full capacity are thus the same across all cost models
because all segments are assigned to the same device. Consequently, the measured query
latencies are almost equal for these two cases. For all three workloads, the figures show
that DRAM capacity thresholds exist where adding additional capacity does not decrease
the end-to-end runtime. These thresholds correspond to the unused data per benchmark.
Compared to the C3 cost model, the mean end-to-end measured runtimes for the C0, C1,
and C2 models are 31, 18, and 3 percent higher, respectively. The lower plots in Fig. 4
show the predicted runtimes by the respective cost models. The cost models predict the

Workload-Driven Data Placement for Tierless In-Memory Database Systems 59

14 Hurdelhey, Weisgut, and Boissier

0 1 2 3 4
DRAM Capacity [GB]

0

100

101

102

103

104

W
or

kl
oa

d
Ru

nt
im

e
W

ith
 D

at
a

Pl
ac

em
en

t B
as

ed
On

 O
1

LP
 A

lg
or

ith
m

 [s
]

Measure-
ment

C0
C1
C2
C3
End-
To-
End

0 1 2 3 4 5 6 7
DRAM Capacity [GB]

0 2 4 6 8 10
DRAM Capacity [GB]

Fig. 4: Comparison of (i) measured end-to-end workload runtime and (ii) runtime prediction accuracy
for data placements determined with the objective O1 ILP algorithm based on the respective cost
model.

workload runtimes for data placements determined with the O1 algorithm and cost model
C3. Model C0 underestimates the runtime by up to two orders of magnitude compared
to the end-to-end measured runtimes. We argue that the costs predicted by C0 are on an
arbitrary scale as it is not calibrated and cannot be seen as runtime predictions. Model C3
often overestimates the workload runtime. Potential reasons why the end-to-end measured
runtimes are lower than expected are that model C3 overestimates data access costs because
parallelization and caching speed up data accesses.
In conclusion, we showed that calibrated cost models offer significantly better cost predictions
than models with manually-determined weights. To efficiently estimate data placement
effects on runtime, we argue that our calibrated cost models are both simple and offer
sufficient accuracy for our application. Assessing the accuracy of single cost predictions is
challenging because no gold standard cost model exists to compare against. Experimentally
determining the cost of each segment placement is infeasible due to the large size of
the placement decision space. However, the demonstrated end-to-end placement decision
and the runtime prediction accuracy of cost model C3 show solid results and allow us to
recognize differences between the placement selection algorithms. Further adjustments
to the device calibration (e.g., by better modeling the caching behavior) could improve
the runtime prediction accuracy. Based on our development efforts, we argue that both
(i) the usage of calibration data and (ii) the calibration data quality are significant factors for
making calibrated cost models a reliable decision basis for placement selection algorithms.

60 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 15

4 Placement Selection Algorithms

Previous research [Bo22] has shown that simple heuristics can be tractable alternatives to
optimal solutions because they often offer comparable results at lower algorithm runtime
and memory usage. We investigate which trade-offs users have to make between different
data placement algorithms. We compare algorithms for objective O1 as a proxy for all
objectives. The algorithms include the LP algorithm introduced in Sect. 2, a second linear
programming algorithm that makes placement decisions with column granularity, a greedy
heuristic, and a multi-tier Knapsack algorithm.

4.1 Algorithm Descriptions

In the Greedy and Knapsack algorithm, we require computing an access performance
metric 𝑣𝑑 per device 𝑑 and calculate it with the formula in (16). The existence of such an
access performance metric implies an ordering of the devices by their access speeds (e.g.,
latency, bandwidth). This ordering contradicts our goal to organize the memory and storage
mediums in a tierless device pool with no fixed ordering. However, this sorting is not used
in our ILP solution.

𝑣𝑑 =
∑︁
𝛾∈Γ

(
∑︁
b ∈Ξ

𝑢𝑑,𝛾, b ·
∑︁

𝑡∈𝑇,𝑎∈𝐴,𝑝∈𝑃
ℎ𝑡 ,𝑎, 𝑝,𝛾) (16)

Multi-Device Greedy The Greedy algorithm orders the devices by their access perfor-
mance and assigns the segments greedily to the fastest devices. This algorithm bases on
the greedy heuristics proposed by Boissier et al. [BSU18, p. 214] and the HOT strategy by
Vogel et al. [Vo20, pp. 2667–2668]. These two related works use cost models optimized
for their respective database systems and intertwine the cost models with the placement
selection algorithms. In our work, we focus on the Greedy algorithm itself and distinguish
the placement selection algorithm from the cost model.
In the algorithm described in Algorithm 1, we first sort the devices by their access
performance 𝑣𝑑 in ascending order. To assign segments to devices, we regard the devices in
a pairwise manner, starting with the fastest devices. We thus model the decision problem
as a series of binary decisions between two devices. For each pair, we compute in Line 6
the segment scores and sort the segments according to these scores in descending order. A
segment’s score is calculated as the difference between the segment’s cost values for the two
corresponding devices. The variable 𝑐𝑤,𝑑 holds the predicted costs for assigning a segment
𝑤 to device 𝑑. We then greedily assign the segments to the current device as the device’s
byte capacity permits. Assuming 𝑆 is the number of segments and 𝐷 the number of devices,
the asymptotic complexity of this Greedy algorithm is O(𝑆 · log 𝑆 · 𝐷 + 𝐷 log 𝐷). However,
the number of devices 𝐷 is constantly three in our experiments. Another difference between
our Greedy algorithm and the previously-mentioned greedy algorithms from related work is
our focus on supporting more than two devices. For example, the HOT algorithm at table
granularity by Vogel et al. “places tables descending in order of their number of accesses on
the fastest device with enough space for the whole table” [Vo20, p. 2668]. In comparison

Workload-Driven Data Placement for Tierless In-Memory Database Systems 61

16 Hurdelhey, Weisgut, and Boissier

Algorithm 1: Greedy Placement Selection Algorithm
Data: set of all segments 𝑊 , segment sizes, segment costs 𝑐𝑤,𝑑 , device byte capacities, device

calibration
Result: data placement

1 sorted devices = sort devices by 𝑣𝑑 ascending;
2 for (𝑑𝑖 , 𝑑𝑖+1) in sorted devices do
3 if all segments assigned then
4 return data placement;
5 end
6 sorted segments = sort segments 𝑤 ∈ 𝑊 that are unassigned by (𝑐𝑤,𝑑𝑖+1 − 𝑐𝑤,𝑑𝑖) descending;
7 for segment 𝑤 of sorted segments do
8 if 𝑤 fits onto device 𝑑𝑖 then
9 assign 𝑤 to 𝑑𝑖 ;

10 end
11 end
12 end

with these related work algorithms, we argue that our Greedy algorithm can produce data
placements for multiple devices that induce lower end-to-end query latencies because we
model the cost increase between the two devices instead of the absolute costs. With the
proposed technique, our Greedy algorithm resembles the cost model usage of our ILP
models.

Linear Programming with Column Granularity We compare the objective O1 LP
algorithm and an adapted version that uses columns instead of segments as the placement
decision unit. We refer to this segment-granular LP algorithm as LP and the algorithm that
makes decisions at a column granularity as Column-LP. In related work by Vogel et al.
[Vo20, p. 2674], the authors of the Mosaic storage engine find that their column-granular
HOT column strategy outperforms the table-granular HOT table algorithm by a factor of
1.99. Similarly, we compare column and segment granularities. Our Column-LP is inspired
by Mosaic’s LOPT optimization model, which also uses column granularity. A complete
re-implementation of the LOPT model was infeasible for our comparison because the LOPT
model builds on a cost model that is intertwined with the authors’ proposed LP model and
specific to the database system’s execution model.

Multi-Tier Knapsack The multi-tier Knapsack algorithm is an implementation of the
multilevel generalized assignment problem (MGAP) simplification proposed by Dreseler
[Dr22, p. 113]. The author models the placement selection problem as a series of independent
binary decision problems between pairs of devices, similarly to our proposed Greedy
algorithms in Sect. 4.1. Due to this simplification, the MGAP approach does not necessarily
yield the optimal solution. The algorithm first sorts the devices by their access performance
𝑣𝑑 in ascending order. The devices are regarded in a pairwise manner to assign the segments
to them, starting with the fastest devices. Each binary decision problem is formulated as
a Knapsack problem to determine which segments to place on the current device 𝑑𝑖 . All

62 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 17

segments not selected for the current device will be reconsidered for the next device pair. Thus,
we do not assign segments to device 𝑑𝑖+1. The segments correspond to the Knapsack items.
The computed segment costs 𝑐𝑤,𝑑𝑖+1 − 𝑐𝑤,𝑑𝑖 are the items’ values, and the segment sizes are
the items’ weights. The byte capacity of the current device defines the size of the Knapsack.
We use the Google OR-Tools KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER with
a timeout of 500 seconds [Go22b].

4.2 Evaluation

The upper plots in Fig. 5 show the predicted workload runtime for data placements determined
with the respective algorithm. The LP algorithm consistently determines the placements with
the lowest runtime predicted by cost model C3. Relative to the LP algorithm’s mean predicted
runtime, the Column-LP algorithm’s placements incur the highest mean predicted runtime
with 203% of the LP placement’s runtime. The Column-LP is followed by the Greedy
algorithm at 136% and the Knapsack algorithm at 115% of the LP placement’s runtime. The
column-granular decisions of the Column-LP incur significantly higher runtimes because
(i) they cannot capture vertical data access skew and (ii) they cannot exhaust the device
capacities as efficiently as segment-granular placements. Furthermore, the Knapsack and
Greedy algorithms are unable to determine the optimum data placement in some conditions
due to their greedy strategy.

0 1 2 3 4
DRAM Capacity [GB]

102

103

En
d-

To
-E

nd
 M

ea
su

re
d

W
or

kl
oa

d
Ru

nt
im

e
[s

]

Algorithm
Greedy
LP
Column-
LP
Knap-
sack

0 2 4 6
DRAM Capacity [GB]

0.0 2.5 5.0 7.5 10.0
DRAM Capacity [GB]

Fig. 5: Predicted and measured runtime of data placements determined with different placement
algorithms based on cost model C3. Measurements for JOB, TPC-DS with scale factor ten, and
TPC-H with scale factor ten.

The lower plots in Fig. 5 show the end-to-end measured workload runtime for data
placements determined with the respective algorithm. Due to cost prediction inaccuracies,
not all measured runtimes show the same patterns as the predicted runtimes. In our
experiments, we also discovered cases where simpler algorithms (e.g., Greedy, Knapsack)
produced placements that incurred lower end-to-end runtimes than the placement determined
by the LP algorithm because of these inaccuracies. However, on average, the LP algorithm

Workload-Driven Data Placement for Tierless In-Memory Database Systems 63

18 Hurdelhey, Weisgut, and Boissier

determines the placements with the lowest end-to-end workload runtime. The Knapsack
algorithm’s results have the highest mean predicted runtime at 147 percent of the LP
algorithm’s results. The Greedy algorithm follows at 135 percent and the Column-LP
algorithm at 132 percent.

Fig. 6: Mean algorithm runtime and solution quality
across JOB, TPC-DS, and TPC-H benchmarks. The
solution quality corresponds to the cost model C3’s
predicted runtime to execute the workload queries
once per data placement.

An evaluation of the trade-off between al-
gorithm runtime and solution quality is
shown in Fig. 6. The algorithm choice is
subject to a pareto-optimal trade-off be-
tween both metrics. Compared to the LP
algorithm, the Knapsack algorithm’s result-
ing data placements are only 15 percent less
optimal, while the algorithm has an 80 per-
cent shorter runtime. Similarly, the Greedy
algorithm trades a 36 percent optimality de-
crease for an 81 percent runtime decrease,
making it a viable alternative to the op-
timal LP algorithm. For example, for the
TPC-H benchmark with scale factor 1 000,
1 818 000 segments need to be assigned to
the devices. In this context, the LP algorithm takes 60 minutes to determine a data placement,
whereas the Pyomo setup time and the Gurobi solver runtime are responsible for one-third of
the runtime, respectively. In contrast, the Greedy and Knapsack algorithms terminate within
20 minutes, and the Column-LP algorithm takes only 81 seconds. Memory consumption
measurements show similar patterns.

5 Related Work

Several related works on automated decision-making are shown in Tab. 1. Some of the stated
research does not determine data placements but related configurations, such as encoding
or index selection. Similar to our approach, the Mosaic storage system for the Umbra
DBMS [Vo20] determines data placements with a linear optimization model and two greedy
algorithms. However, Mosaic uses a cost model focused on sequential reads, matching
Umbra’s data access patterns. The authors compare column-granular data placements with
table-granular placements and find a 1.99× relative speedup. Further related works include
the Hybrid Data Layouts for Tiered HTAP Databases [BSU18] and the automatic tiering
research by Dreseler [Dr22].
Boissier [Bo22] proposes an optimal linear programming encoding selection algorithm
and a greedy heuristic that he often found on par with the optimal solution. The heuristic
strategy weighs the candidates by their benefit-to-cost ratio [Va00]. To predict runtime costs
of encoding configurations, Boissier uses multiple linear regression models comparable to
the work of Ma et al. [Ma21]. Another cost model approach are zero-shot models [HB22].

64 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 19

Related Decision-Making Work Granularity Config Optimization Placement Features

D
at

a
Pl

ac
em

en
t

En
co

di
ng

In
de

x

St
or

ag
e

La
yo

ut

D
ev

ic
e

C
ou

nt

O
bj

ec
tiv

e
O

1

O
bj

ec
tiv

e
O

2

O
bj

ec
tiv

e
O

3

Mosaic [Vo20] Columns n
Hybrid Layout Hyrise [BSU18] Columns 2
Automatic Tiering [Dr22] Segments 2
Encoding Configuration [Bo22] Segments - - - -
Config Optimization [RSB22] Segments n
Cost Modeling HANA [La22] Data Structures 2
Proteus and Tiresias [ALD22] Varying 2
This Work Segments n

Tab. 1: Overview of Related DBMS Configuration Selection Research

However, compared to our calibrated cost models, such learned models have high complexity,
long training times, and are hard to generalize.
Richly et al. [RSB22] optimize multiple configuration aspects jointly. The underlying cost
model exhaustively calibrates scan operations for various configurations, which results in a
long preparation phase to establish cost estimates.
Lasch et al. [La22] propose a data placement cost model for PMem, limiting the number
of devices where a data unit can be placed to two (DRAM and PMem). Their model uses
(i) device calibration data and (ii) workload information in the form of access counts, similar
to our model C3. However, the authors also model the costs for additional data structures
and regard cache miss ratios.
Finally, Abebe et al. [ALD22] propose Tiresias, a storage cost model that can predict future
workloads to optimize multiple configuration aspects jointly. Such a predictive capability
could be useful for our data placement system to anticipate dynamic workload changes.

6 Discussion

We proposed an automatic placement selection system for IMDBMS that supports multiple
placement objectives, makes workload-driven placement decisions, and manages its devices
in a tierless pool. In our exemplary implementation for the database system Hyrise, we
compared several cost models and placement selection algorithms. The proposed cost
models are applicable for database systems making similar assumptions as Hyrise (cf.
Sect. 3.1), while the proposed placement algorithms have general applicability.
Based on our comparison of an optimal linear programming algorithm, a heuristic based
on the Knapsack problem, and a greedy algorithm, we argue that the algorithm choice is

Workload-Driven Data Placement for Tierless In-Memory Database Systems 65

20 Hurdelhey, Weisgut, and Boissier

subject to a pareto-optimal trade-off between algorithm resource usage and solution quality.
The Knapsack and Greedy algorithms are viable alternatives to the resource-intensive LP
algorithm, especially under inaccurate cost predictions. Placement granularity significantly
influences the solution’s optimality, as we found column-granular placements to incur, on
average, 103 percent higher query latencies than segment-granular decisions. However,
such column-granular decisions can be viable for low-latency applications (e.g., frequent
placement updates for dynamic workloads) requiring fast re-computations of the data
placement, as the column-granular linear programming algorithm to required up to two
orders of magnitude less runtime compared to the segment-granular LP algorithm.
We found our cost model using (i) data access pattern tracking information and (ii) device
calibration data to offer sufficient accuracy to distinguish the differences between placement
selection algorithms and determine suitable placements. While other approaches, such as
learned cost models, can offer higher accuracy, they can be complex, hard to generalize, and
require expensive data collection. In comparison, our cost model is inexpensive to calibrate.
Merely moving the unused data from DRAM to secondary devices already allows for
significant DRAM usage reductions. For the JOB, TPC-DS, and TPC-H benchmark, the
share of data that could be removed from DRAM without increasing the workload latencies
were 25, 49, and 55 percent, respectively. Even naive algorithms and cost models can
determine such placement decisions, as it suffices to track data accesses.

Future Work To further improve our system’s data placements and determine the optimal
end-to-end placement, the choice of both the placement algorithm and the cost model
is relevant. Placement selection algorithms determining placements close to the optimal
solution are a necessary condition. In comparison, an optimal cost model accurately
predicting all real-world database system behavior does not exist. Thus, placement cost
modeling is a complex challenge that requires further research. Future improvements to our
cost model include calibration for all available data types and predicting database system
behavior such as caching. Additionally, operator-granular placement cost models could
enable robustness guarantees for single query runtimes. Furthermore, an open question is
whether the Greedy placement algorithm could be improved with alternative segment sorting
metrics (e.g., by their benefit-to-cost ratio). In addition, we consider extending objective O3
to optimize purchases of the entire infrastructure, including CPU resources, a future work
item. In this work, we focused on block-level devices as placement alternatives to the system’s
DRAM. Extending our system to place data on heterogeneous memory with different access
qualities, e.g., CPU-local DRAM and Compute Express Link (CXL)-attached [CX22],
disaggregated memory, is a potential future effort.

66 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

Automatic Data Placement 21

References

[Ad21] Advanced Micro Devices, Inc: AMD EPYC 7F72 - Technical Specification,
https://www.amd.com/en/product/9656, 2021, visited on: 10/05/2022.

[ALD22] Abebe, M.; Lazu, H.; Daudjee, K.: Tiresias: Enabling Predictive Autonomous
Storage and Indexing. Proc. VLDB Endow. 15/11, pp. 3126–3136, 2022.

[Am21] Amazon Web Services, Inc.: Maximum Transfer Speed between Amazon EC2
and Amazon S3, https://aws.amazon.com/premiumsupport/knowledge-
center/s3-maximum-transfer-speed-ec2/, 2021, visited on: 10/05/2022.

[Ap19] Appuswamy, R.; Graefe, G.; Borovica-Gajic, R.; Ailamaki, A.: The Five-
Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy. Commun.
ACM 62/11, pp. 114–120, 2019.

[Ax22] Axboe, J.: Flexible I/O Tester, https://github.com/axboe/fio, 2022, visited
on: 10/04/2022.

[Bo22] Boissier, M.: Robust and Budget-Constrained Encoding Configurations for
In-Memory Database Systems. Proc. VLDB Endow. 15/4, pp. 780–793, 2022.

[BSU18] Boissier, M.; Schlosser, R.; Uflacker, M.: Hybrid Data Layouts for Tiered
HTAP Databases with Pareto-Optimal Data Placements. In: Proceedings of
the IEEE International Conference on Data Engineering, ICDE. Pp. 209–220,
2018.

[By21] Bynum, M. L.; Hackebeil, G. A.; Hart, W. E.; Laird, C. D.; Nicholson, B. L.;
Siirola, J. D.; Watson, J.-P.; Woodruff, D. L.: Pyomo–Optimization Modeling
in Python. Springer Science & Business Media, 2021.

[CX22] CXL Consortium: Compute Express Link: The Breakthrough CPU-to-Device
Interconnect, https://www.computeexpresslink.org, 2022, visited on:
10/09/2022.

[Da21] Daase, B.; Bollmeier, L. J.; Benson, L.; Rabl, T.: Maximizing Persistent
Memory Bandwidth Utilization for OLAP Workloads. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data. Pp. 339–
351, 2021.

[Dr19] Dreseler, M.; Kossmann, J.; Boissier, M.; Klauck, S.; Uflacker, M.; Plattner, H.:
Hyrise Re-engineered: An Extensible Database System for Research in Re-
lational In-Memory Data Management. In: Proceedings of the International
Conference on Extending Database Technology, EDBT. Pp. 313–324, 2019.

[Dr22] Dreseler, M.: Automatic Tiering for In-Memory Database Systems, DOI:
10.25932/publishup-55825, PhD thesis, Universität Potsdam, 2022, 143 pp.

[Du16] Dulloor, S.; Roy, A.; Zhao, Z.; Sundaram, N.; Satish, N.; Sankaran, R.;
Jackson, J.; Schwan, K.: Data tiering in heterogeneous memory systems. In:
Proceedings of the Eleventh European Conference on Computer Systems,
EuroSys. 15:1–15:16, 2016.

Workload-Driven Data Placement for Tierless In-Memory Database Systems 67

https://www.amd.com/en/product/9656
https://aws.amazon.com/premiumsupport/knowledge-center/s3-maximum-transfer-speed-ec2/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-maximum-transfer-speed-ec2/
https://github.com/axboe/fio
https://www.computeexpresslink.org

22 Hurdelhey, Weisgut, and Boissier

[Ga20] Gamrath, G.; Anderson, D.; Bestuzheva, K.; Chen, W.-K.; Eifler, L.; Gasse, M.;
Gemander, P.; Gleixner, A.; Gottwald, L.; trin Halbig, K.; Hendel, G.; Hojny, C.;
Koch, T.; Bodic, P. L.; Maher, S. J.; Matter, F.; Miltenberger, M.; Mühmer, E.;
jamin Müller, B.; Pfetsch, M. E.; Schlösser, F.; Serrano, F.; Shinano, Y.;
Tawfik, C.; Vigerske, S.; Wegscheider, F.; Weninger, D.; Witzig, J.: The SCIP
Optimization Suite 7.0, http://www.optimization-online.org/DB_HTML/
2020/03/7705.html, 2020, visited on: 10/04/2022.

[Go22a] Google, LLC: Google Benchmark: A Microbenchmark Support Library,
https://github.com/google/benchmark, 2022, visited on: 10/08/2022.

[Go22b] Google, LLC: Google OR-Tools, https : / / developers . google . com /
optimization, 2022, visited on: 10/04/2022.

[Gu21a] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual, https:
//www.gurobi.com/documentation/9.5/refman/index.html, 2021, visited
on: 10/04/2022.

[Gu21b] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual - Parameter
Documentation: MIPGap, https://www.gurobi.com/documentation/9.5/
refman/mipgap2.html#parameter:MIPGap, 2021, visited on: 10/05/2022.

[HB22] Hilprecht, B.; Binnig, C.: Zero-Shot Cost Models for Out-of-the-box Learned
Cost Prediction. Proc. VLDB Endow. 15/11, pp. 2361–2374, 2022.

[He21] Heinzl, L.; Hurdelhey, B.; Boissier, M.; Perscheid, M.; Plattner, H.: Evaluating
Lightweight Integer Compression Algorithms in Column-Oriented In-Memory
DBMS. In: International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures - ADMS. Pp. 26–36, 2021.

[HSY01] Hsu, W. W.; Smith, A. J.; Young, H. C.: I/O reference behavior of production
database workloads and the TPC benchmarks - an analysis at the logical level.
ACM Trans. Database Syst. 26/1, pp. 96–143, 2001.

[HWR14] Höppner, B.; Waizy, A.; Rauhe, H.: An Approach for Hybrid-Memory Scaling
Columnar In-Memory Databases. In: International Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage Architectures
- ADMS. Pp. 64–73, 2014.

[HWW11] Hart, W. E.; Watson, J.-P.; Woodruff, D. L.: Pyomo: modeling and solving
mathematical programs in Python. Mathematical Programming Computation
3/3, pp. 219–260, 2011.

[La22] Lasch, R.; Legler, T.; May, N.; Scheirle, B.; Sattler, K.-U.: Cost Modelling
for Optimal Data Placement in Heterogeneous Main Memory. Proc. VLDB
Endow. 15/11, pp. 2867–2880, 2022.

[Lo03] Lougee-Heimer, R.: The Common Optimization Interface for Operations Re-
search: Promoting open-source software in the operations research community.
IBM J. Res. Dev. 47/1, pp. 57–66, 2003.

68 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://github.com/google/benchmark
https://developers.google.com/optimization
https://developers.google.com/optimization
https://www.gurobi.com/documentation/9.5/refman/index.html
https://www.gurobi.com/documentation/9.5/refman/index.html
https://www.gurobi.com/documentation/9.5/refman/mipgap2.html#parameter:MIPGap
https://www.gurobi.com/documentation/9.5/refman/mipgap2.html#parameter:MIPGap

Automatic Data Placement 23

[Lo19] Lomet, D. B.: Cost/Performance in Modern Data Stores: How Data Caching
Systems Succeed. In: Proceedings of the IEEE International Conference on
Data Engineering, ICDE. P. 140, 2019.

[Ma02] Mandelman, J. A.; Dennard, R. H.; Bronner, G. B.; DeBrosse, J. K.; Di-
vakaruni, R.; Li, Y.; Raden, C. J.: Challenges and future directions for the
scaling of dynamic random-access memory (DRAM). IBM J. Res. Dev. 46/2-3,
pp. 187–222, 2002.

[Ma16] Ma, L.; Arulraj, J.; Zhao, S.; Pavlo, A.; Dulloor, S. R.; Giardino, M. J.;
Parkhurst, J.; Gardner, J. L.; Doshi, K. A.; Zdonik, S. B.: Larger-than-memory
data management on modern storage hardware for in-memory OLTP database
systems. In: Proceedings of the International Workshop on Data Management
on New Hardware, DaMoN. 9:1–9:7, 2016.

[Ma21] Ma, L.; Zhang, W.; Jiao, J.; Wang, W.; Butrovich, M.; Lim, W. S.; Menon, P.;
Pavlo, A.: MB2: Decomposed Behavior Modeling for Self-Driving Database
Management Systems. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. Pp. 1248–1261, 2021.

[ÖTT17] Özcan, F.; Tian, Y.; Tözün, P.: Hybrid Transactional/Analytical Processing: A
Survey. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. Pp. 1771–1775, 2017.

[Pe19] Peng, I. B.; McFadden, M.; Green, E. W.; Iwabuchi, K.; Wu, K.; Li, D.;
Pearce, R.; Gokhale, M. B.: UMap: Enabling Application-driven Optimizations
for Page Management. In: Workshop on Memory Centric High Performance
Computing, MCHPC@SC. Pp. 71–78, 2019.

[Pl14] Plattner, H.: The Impact of Columnar In-Memory Databases on Enterprise
Systems. Proc. VLDB Endow. 7/13, pp. 1722–1729, 2014.

[RSB22] Richly, K.; Schlosser, R.; Boissier, M.: Budget-Conscious Fine-Grained Con-
figuration Optimization for Spatio-Temporal Applications. Proc. VLDB Endow.
15/13, pp. 4079–4092, 2022.

[Sh20] Shiratake, S.: Scaling and Performance Challenges of Future DRAM. IEEE
International Memory Workshop, IMW/, pp. 1–3, 2020.

[Va00] Valentin, G.; Zuliani, M.; Zilio, D. C.; Lohman, G. M.; Skelley, A.: DB2
Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes. In:
Proceedings of the IEEE International Conference on Data Engineering, ICDE.
Pp. 101–110, 2000.

[Vi21] Viswanathan, V.; Kumar, K.; Willhalm, T.; Lu, P.; Filipiak, B.; Sakthivelu, S.:
Intel Memory Latency Checker, https://www.intel.com/content/www/
us/en/developer/articles/tool/intelr-memory-latency-checker.html,
2021, visited on: 10/04/2022.

Workload-Driven Data Placement for Tierless In-Memory Database Systems 69

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html

24 Hurdelhey, Weisgut, and Boissier

[Vo20] Vogel, L.; van Renen, A.; Imamura, S.; Leis, V.; Neumann, T.; Kemper, A.:
Mosaic: A Budget-Conscious Storage Engine for Relational Database Systems.
Proc. VLDB Endow. 13/11, pp. 2662–2675, 2020.

[We22] Weisgut, M.; Ritter, D.; Boissier, M.; Perscheid, M.: Separated Allocator
Metadata in Disaggregated In-Memory Databases: Friend or Foe? In: IEEE In-
ternational Parallel and Distributed Processing Symposium, IPDPS Workshops.
Pp. 1202–1208, 2022.

[Wu21] Wu, K.; Guo, Z.; Hu, G.; Tu, K.; Alagappan, R.; Sen, R.; Park, K.; Arpaci-
Dusseau, A. C.; Arpaci-Dusseau, R. H.: The Storage Hierarchy is Not a
Hierarchy: Optimizing Caching on Modern Storage Devices with Orthus. In:
19th USENIX Conference on File and Storage Technologies. Pp. 307–323,
2021.

70 Ben Hurdelhey, Marcel Weisgut, Martin Boissier

