1.
Braun, T., Hurdelhey, B., Meier, D., Tsayun, P., Hagedorn, C., Huegle, J., Schlosser, R.: GPUCSL: GPU-Based Library for Causal Structure Learning. ICDM Open Project Forum. pp. 1236–1239 (2022).
2.
Hagedorn, C., Huegle, J., Schlosser, R.: Understanding Unforeseen Production Downtimes in Manufacturing Processes using Log Data-driven Causal Reasoning. Journal of Intelligent Manufacturing. 33, 2027–2043 (2022).
3.
Hagedorn, C., Lange, C., Huegle, J., Schlosser, R.: GPU Acceleration for Information-theoretic Constraint-based Causal Discovery. In: Le, T.D., Liu, L., Kıcıman, E., Triantafyllou, S., and Liu, H. (eds.) Proceedings of The KDD’22 Workshop on Causal Discovery, Proceedings of Machine Learning Research (PMLR) 185. pp. 30–60 (2022).
4.
Huegle, J., Hagedorn, C., Boehme, L., Poerschke, M., Umland, J., Schlosser, R.: MANM-CS: Data Generation for Benchmarking Causal Structure Learning from Mixed Discrete-Continuous and Nonlinear Data. WHY-21 @ NeurIPS 2021 (2021).
5.
Hagedorn, C., Huegle, J.: Constraint-Based Causal Structure Learning in Multi-GPU Environments. In: Seidl, T., Fromm, M., and Obermeier, S. (eds.) Proceedings of the LWDA 2021 Workshops: FGWM, KDML, FGWI-BIA, and FGIR, Online, September 1-3, 2021. pp. 106–118. CEUR-WS.org (2021).
6.
Huegle, J., Hagedorn, C., Perscheid, M., Plattner, H.: MPCSL - A Modular Pipeline for Causal Structure Learning. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. pp. 3068–3076. Association for Computing Machinery, New York, NY, USA (2021).
7.
Hagedorn, C., Huegle, J.: GPU-Accelerated Constraint-Based Causal Structure Learning for Discrete Data. Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). pp. 37–45 (2021).
8.
Huegle, J., Hagedorn, C., Uflacker, M.: Unterstützte Fehlerbehebung durch kausales Strukturwissen in Überwachungssystemen der Automobilfertigung. In: Götz, S., Linsbauer, L., Schaefer, I., and Wortmann, A. (eds.) Software Engineering 2021 Satellite Events, Lecture Notes in Informatics (LNI). Gesellschaft für Informatik, Bonn (2021).
9.
Schmidt, C., Huegle, J., Horschig, S., Uflacker, M.: Out-of-Core GPU-Accelerated Causal Structure Learning. Algorithms and Architectures for Parallel Processing. ICA3PP 2019. pp. 89–104. Springer International Publishing (2020).
10.
Huegle, J., Hagedorn, C., Uflacker, M.: How Causal Structural Knowledge Adds Decision-Support in Monitoring of Automotive Body Shop Assembly Lines. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. pp. 5246–5248. International Joint Conferences on Artificial Intelligence Organization (2020).
11.
Schmidt, C., Huegle, J.: Towards a GPU-Accelerated Causal Inference. HPI Future SOC Lab - Proceedings 2017. pp. 187–194 (2020).
12.
Schmidt, C., Huegle, J., Bode, P., Uflacker, M.: Load-Balanced Parallel Constraint-Based Causal Structure Learning on Multi-Core Systems for High-Dimensional Data. SIGKDD Workshop on Causal Discovery. pp. 59–77 (2019).
13.
Schmidt, C., Uflacker, M.: Workload-Driven Data Placement for GPU-Accelerated Database Management Systems. Datenbanksysteme für Business, Technologie und Web BTW 2019, 18. Fachtagung des GI-Fachbereichs ,,Datenbanken und Informationssysteme" (DBIS), 4.-8. März 2019, Rostock, Germany, Workshopband (2019).
14.
Schmidt, C., Huegle, J., Uflacker, M.: Order-independent constraint-based causal structure learning for gaussian distribution models using GPUs. SSDBM ’18 Proceedings of the 30th International Conference on Scientific and Statistical Database Management. pp. 19:1–19:10. ACM, New York, NY, USA (2018).
15.
Schmidt, C., Dreseler, M., Akin, B., Roy, A.: A Case for Hardware-Supported Sub-Cache Line Accesses. Data Management on New Hardware (DaMoN), in conjunction with SIGMOD (2018).
16.
Schwarz, C., Schmidt, C.: Interactive Product Cost Simulation on Coprocessors. HPI Future SOC Lab: Proceedings 2015. pp. 103–107 (2017).
17.
Schwarz, C., Schmidt, C., Hopstock, M., Sinzig, W., Plattner, H.: Efficient Calculation and Simulation of Product Cost Leveraging In-Memory Technology and Coprocessors. The Sixth International Conference on Business Intelligence and Technology (BUSTECH 2016) (2016).