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Abstract11

The hard-sphere model is one of the most extensively studied models in statistical physics. It12

describes the continuous distribution of spherical particles, governed by hard-core interactions. An13

important quantity of this model is the normalizing factor of this distribution, called the partition14

function. We propose a Markov chain Monte Carlo algorithm for approximating the grand-canonical15

partition function of the hard-sphere model in d dimensions. Up to a fugacity of λ < e/2d, the16

runtime of our algorithm is polynomial in the volume of the system. This covers the entire known17

real-valued regime for the uniqueness of the Gibbs measure.18

Key to our approach is to define a discretization that closely approximates the partition function19

of the continuous model. This results in a discrete hard-core instance that is exponential in the size of20

the initial hard-sphere model. Our approximation bound follows directly from the correlation decay21

threshold of an infinite regular tree with degree equal to the maximum degree of our discretization.22

To cope with the exponential blow-up of the discrete instance we use clique dynamics, a Markov23

chain that was recently introduced in the setting of abstract polymer models. We prove rapid mixing24

of clique dynamics up to the tree threshold of the univariate hard-core model. This is achieved by25

relating clique dynamics to block dynamics and adapting the spectral expansion method, which was26

recently used to bound the mixing time of Glauber dynamics within the same parameter regime.27
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1 Introduction35

Statistical physics models particle systems as probability distributions. One of the most36

fundamental and mathematically challenging models in this area is the hard-sphere model,37

which plays a central role in understanding the thermodynamic properties of monoatomic38

gases and liquids [7, 29]. It is a continuous model that studies the distribution and macroscopic39

behavior of indistinguishable spherical particles, assuming only hard-core interactions, i.e.,40

no two particles can occupy the same space.41

We focus on computational properties of the grand-canonical ensemble of the hard-sphere42

model in a finite d-dimensional cubic region V = [0, ℓ)d in the Euclidean space. In the43
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grand-canonical ensemble, the system can exchange particles with its surrounding based on44

a fugacity parameter λ, which is inverse to the temperature of the system. For the rest of45

the paper, we make the common assumption that the system is normalized such that the46

particles have unit volume. That means we fix their radii to r = (1/vd)1/d, where vd is the47

volume of a unit sphere in d dimensions.48

A simple probabilistic interpretation of the distribution of particles in the grand-canonical49

ensemble is that centers of points that are drawn from a Poisson point process on V with50

intensity λ, conditioned on the event that no two particles overlap (i.e., every pair of centers51

has distance at least 2r). The resulting distribution over particle configurations in V is52

called the Gibbs distribution of the model. An important quantity in such models is the53

so called partition function Z(V, λ), which can be seen as the normalizing constant of the54

Gibbs distribution. Formally, it is defined as55

Z(V, λ) = 1 +
∑

k∈N>0

λk

k!

∫
Vk

D
(

x(1), . . . , x(k)
)

dνd×k,56

where57

D
(

x(1), . . . , x(k)
)

=
{

1 if d
(
x(i), x(j)) ≥ 2r for all i, j ∈ [k] with i ̸= j

0 otherwise
58

and νd×k is the Lebesgue measure on Rd×k. Commonly, two computational task are59

associated with the grand-canonical hard-sphere model: (1) approximating its partition60

function Z(V, λ), and (2) approximately sampling from the Gibbs distribution.61

Studying computational aspects of the hard-sphere model carries a historical weight, as in62

the seminal work of Metropolis [41], the Monte Carlo method was introduced to investigate63

a two-dimensional hard-sphere model. Approximate-sampling Markov chain approaches have64

been mainly focused on the canonical ensemble of the model, that is, the system does not65

exchange particles with its surrounding and thus, the distribution is defined over a fixed66

number of spheres [31, 36, 34]. Considering the grand canonical ensemble, exact sampling67

algorithms have appeared in the literature for the two-dimensional model without asymptotic68

runtime guarantees [37, 38, 43]. A result that is more aligned with theoretical computer69

science was given in [28], where the authors introduced an exact sampling algorithm for the70

grand-canonical hard-sphere model in d-dimensions. Their algorithm is based on partial71

rejection sampling with a runtime linear in the volume of the system |V| when assuming a72

continuous computational model and access to a sampler from a continuous Poisson point73

process. Their approach is guaranteed to apply for λ < 2−(d+1/2).74

Besides such sampling results, there is an ongoing effort to improve the known fugacity75

regime where the Gibbs measure is unique and correlations decay exponentially fast [22, 14,76

32, 42]. Note that for many discrete spin systems, such as the hard-core model, correlation77

decay is closely related to the applicability of different methods for efficient approximation of78

the partition function [50, 24, 54]. Recently, the correlation decay bounds for the hard-sphere79

model were improved in [32] to λ < 2/2d, using probabilistic arguments, and in [42] to80

λ < e/2d, based on an analytic approach. A common feature of [32] and [42] is that they81

translated tools originally developed in theoretical computer science for investigating the82

discrete hard-core model to the continuous domain.83

Our work is in line with the computational view on the hard-sphere model but more84

algorithmic in nature. We investigate the range of the fugacity λ for which an approximation85

of Z(V, λ) can be obtained efficiently in terms of the volume of the system |V|, assuming a86
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discrete computational model. Our main result is that for all λ < e/2d there is a randomized87

algorithm for ε-approximating the partition function in time polynomial in |V| and 1/ε.88

▶ Theorem 1. Let (V, λ) be an instance of the continuous hard-sphere model with V = [0, ℓ)d.89

If there is a δ ∈ (0, 1] such that90

λ ≤ (1 − δ) e
2d

,91

then for each ε ∈ (0, 1] there is a randomized ε-approximation of Z(V, λ) computable in time92

polynomial in |V|1/δ2
and 1

ε .93

Note that this bound on λ precisely coincides with the best known bound for the uniqueness94

of the Gibbs measure in the thermodynamic limit, recently established in [42]. For many95

discrete spin systems, such as the hard-core model or general anti-ferromagnetic 2-state spin96

systems, the region of efficient approximation of the partition function is closely related to97

uniqueness of the Gibbs measure. More precisely, it can be shown that the partition function98

of every graph of maximum degree ∆ can be approximated efficiently if the corresponding99

Gibbs distribution on an infinite ∆ regular tree is unique [39, 53]. A detailed discussion for100

the discrete hard-core model can be found in the next subsection. In a sense, Theorem 1101

can be seen as the algorithmic counterpart of the recent uniqueness result for the continuous102

hard-sphere model. This answers an open question, asked in [42].103

The way we prove our result is quite contrary to [32] and [42]. Instead of translating104

discrete tools from computer science into the continuous domain, we rather discretize the105

hard-sphere model. By this, existing algorithmic and probabilistic techniques for discrete106

models become available, and we avoid continuous analysis.107

Our applied discretization scheme is fairly intuitive and results in an instance of the108

discrete hard-core model. This model has been extensively studied in the computer science109

community. However, as this hard-core instance is exponential in the size of the continuous110

system |V|, existing approaches for approximating its partition function, such a Markov111

chain Monte Carlo methods based on Glauber dynamics, are not feasible. We overcome112

this problem by applying a Markov chain Monte Carlo approach based on clique dynamics,113

which were introduced in [23] in the setting of abstract polymer models. Previously known114

conditions for the rapid mixing of clique dynamics were developed for the multivariate version115

of the hard-core model. Due to this generality, those conditions do not result in the desired116

bound in our univariate setting. Instead we relate those clique dynamics to another Markov117

chain, called block dynamics. We then prove the desired mixing time for the block dynamics118

by adapting a recently introduced technique for bounding the mixing time of Markov chains,119

based on local spectral expansion [2]. Together with a known self-reducibility scheme for120

clique dynamics, this results in the desired approximation algorithm.121

Note that we aim for a rigorous algorithmic result for approximating the partition122

function of the continuous hard-sphere model. To be in line with commonly used discrete123

computational models, our Markov chain Monte Carlo algorithm does not assume access to124

a continuous sampler but instead samples approximately from a discretized version of the125

Gibbs distribution. Note that sampling from the continuous hard-sphere partition function126

cannot be done using a discrete computation model as this would involve infinite float pointer127

precision. For practical matters, our discretization of the Gibbs distribution can be seen as128

an approximation of the original continuous Gibbs measure. However, a rigorous comparison129

between both distributions based on total variation distance is not applicable, due to the130

fact that one is discrete whereas the other is continuous in nature.131
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61:4 A spectral independence view on hard spheres via block dynamics

Assuming access to a continuous sampler, we believe that our approach can be used to132

obtain an approximation of the Gibbs distribution of the continuous model within the same133

fugacity regime, by adding small perturbations to the drawn sphere centers. This would be134

in line with the relation between the mixing time of continuous heat-bath dynamics and135

strong spatial mixing, pointed out in [32], combined with the uniqueness bound from [42].136

In Sections 1.1–1.3 we discuss our contributions in more detail and explain how they137

relate to the existing literature. Finally in Section 1.4 we discuss possible extensions and138

future work. All technical details, statements and proofs are presented the full version of the139

paper.140

1.1 Discretization and hard-core model141

Our discretization scheme expresses the hard-sphere partition function as the partition142

function of an instance of the (univariate) hard-core model. An instance of the hard-core143

model is a tuple (G, λ) where G = (V, E) is an undirected graph and λ ∈ R>0. Its partition144

function is defined as145

Z(G, λ) :=
∑

I∈I(G)

λ|I|,146

where I(G) denotes the independent sets of G. A common way to obtain an approximation147

for the partition function is by applying a Markov chain Monte Carlo algorithm. This involves148

sampling from the Gibbs distribution µ(G,λ) of (G, λ), which is a probability distribution on149

I(G) that assigns each independent set I ∈ I(G) the probability150

µ(G,λ)(I) = λ|I|

Z(G, λ) .151

Conditions for efficient approximation of the hard-core partition function have been152

studied extensively in the theoretical computer science community. Due to hardness results153

in [50] and [24], it is known that for general graphs of maximum degree ∆ ∈ {3} ∪ N>5154

there is a critical parameter value λc(∆) = (∆ − 1)∆−1/(∆ − 2)∆, such that there is no155

FPRAS for the partition function of (G, λ) for λ > λc(∆), unless RP = NP. On the other156

hand, in [54] it was proven that there is a deterministic algorithm for approximating the157

partition function of (G, λ) for λ < λc(∆) that runs in time |V |O(∆). The critical value158

λc(∆) is especially interesting, as it precisely coincides with the upper bound on λ for159

which the hard-core model on an infinite ∆-regular tree exhibits strong spatial mixing and a160

unique Gibbs distribution [54]. For this reason, it is also referred to as the tree threshold.161

This relation between computational hardness and phase transition in statistical physics is162

one of the most celebrated results in the area. Both, the hardness results [25, 3] and the163

approximation algorithms [46, 30] were later generalized for complex λ.164

Note that the computational hardness above the tree threshold λc(∆) for general graphs165

of maximum degree ∆ applies to both, randomized and deterministic algorithms. However,166

in the randomized setting, Markov chain Monte Carlo methods are known to improve167

the runtime of the algorithm introduced in [54]. Those approaches use the vertex-wise168

self-reducibility of the hard-core model to construct a randomized approximation of the169

partition function based on an approximate sampler for the Gibbs distribution. Commonly,170

a Markov chain on the state space I(G), called Glauber dynamics, is used to construct171

the sampling scheme. At each step, a vertex v ∈ V is chosen uniformly at random. With172

probability λ/(1 + λ) the chain tries to add v to the current independent set and otherwise173

it tries to remove it. The resulting Markov chain is ergodic and reversible with respect174
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to the Gibbs distribution, meaning that it eventually converges to µ(G,λ). A sequence of175

results has shown that for all ∆ ≥ 3 there is a family of graphs with maximum degree ∆,176

such that the Glauber dynamics are torpidly mixing for λ > λc(∆), even without additional177

complexity-theoretical assumptions [17, 27, 45]. Whether the Glauber dynamics are rapidly178

mixing for the entire regime λ < λc(∆) remained a long-standing open problem, until recently179

the picture was completed [2]. By relating spectral expansion properties of certain random180

walks on simplicial complexes to the Glauber dynamics, it was shown that the mixing time is181

polynomial in |V | below the tree threshold. The mixing time was recently further improved182

in [12] for a broader class of spin systems by combining simplicial complexes with entropy183

factorization and using the modified log-Sobolev inequality.184

By mapping the hard-sphere model to an instance of the hard-core model we can make use185

of the existing results about approximation and sampling below the tree threshold. Roughly,186

our discretization scheme restricts the positions of sphere centers to an integer grid, while187

scaling the radii of spheres and the fugacity appropriately. For a hard-sphere instance (V, λ)188

with V = [0, ℓ)d the hard-core representation for resolution ρ ∈ R≥1 is a hard-core instance189

(Gρ, λρ) with Gρ = (Vρ, Eρ). Each vertex v ∈ Vρ represents a grid point in the finite integer190

lattice of side length ρℓ. Two distinct vertices in Vρ are connected by an edge in Eρ if the191

Euclidean distance of the corresponding grid points is less than 2ρr. Furthermore, we set192

λρ = λ/ρd. We provide the following result on the rate of convergence of Z(Gρ, λρ) to the193

hard-sphere partition function Z(V, λ) in terms of ρ.194

▶ Lemma 2. Let (V, λ) be an instance of the continuous hard-sphere model in d dimensions.195

For each resolution ρ ≥ 2
√

d it holds that196

1 − ρ−1eΘ(|V| ln|V|) ≤ Z(V, λ)
Z(Gρ, λρ) ≤ 1 + ρ−1eΘ(|V| ln|V|).197

Although proving this rate of convergence involves some detailed geometric arguments,198

there is an intuitive reason why the partition functions converge eventually as ρ → ∞.199

Increasing the resolution ρ also linearly increases the side length of the grid and the minimum200

distance that sphere centers can have. This is equivalent to putting a grid into V with201

increasing granularity but fixing the radii of spheres instead. However, only scaling the202

granularity of this grid increases the number of possible configurations by roughly ρd, which203

would cause the partition function of the hard-core model to diverge as ρ → ∞. To204

compensate for this, we scale the weight of each vertex in the hard-core model by the inverse205

of this factor.206

Using this discretization approach, the fugacity bound from Theorem 1 results from207

simply considering ∆ρ, the maximum degree of Gρ and comparing λρ with the corresponding208

tree threshold λc(∆ρ). Recall that we assume r = (1/vd)1/d. A simple geometric argument209

shows that ∆ρ is roughly upper bounded by 2dρd for sufficiently large ρ. Now, observe that210

λρ = λ

ρd
< λc

(
2dρd

)
,211

for λ < ρdλc
(
2dρd

)
. This follows from the fact that ρdλc

(
2dρd

)
converges to e/2d from above212

for ρ → ∞. Thus, the approximation bound from Theorem 1 and the uniqueness bound in213

[42] coincide with the regime of λ, for which λρ is below the tree threshold λc(∆ρ) in the214

limit ρ → ∞.215

The arguments above show that for a sufficiently high resolution ρ the partition function216

of the hard-sphere model Z(V, λ) is well approximated by the partition function of our217

discretization (Gρ, λρ) and that (Gρ, λρ) is below the tree threshold for λ < e/2d. However,218
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61:6 A spectral independence view on hard spheres via block dynamics

this does not immediately imply an approximation algorithm within the desired runtime219

bounds. Based on Lemma 2, we still need to choose ρ exponentially large in the volume |V|.220

Note that the number of vertices in Gρ is roughly |Vρ| ∈ Θ
(
ρd|V|

)
. Even without explicitly221

constructing the graph, this causes problems, as the best bound for the mixing time of the222

Glauber dynamics is polynomial in |Vρ| and thus exponential in |V|. Intuitively, the reason223

for this mixing time is that the Glauber dynamics only change one vertex at each step.224

Assuming that each vertex should be updated at least once to remove correlations with the225

initial state, any mixing time that is sublinear in the number of vertices is unlikely. We226

circumvent this problem by applying dynamics that update multiple vertices at each step227

but still allow each step to be computed efficiently without constructing the graph explicitly.228

1.2 Block and clique dynamics229

Most of the results that we discuss from now on apply to the multivariate version of the230

hard-core model, that is, each vertex v ∈ V has its own weight λv. For a given graph231

G = (V, E) we denote the set of such vertex weights by λ = {λv}v∈V and write (G, λ) for232

the resulting multivariate hard-core instance. In the multivariate setting, the contribution of233

an independent set I ∈ I(G) to the partition function is defined as the product of its vertex234

weights (i.e.,
∏

v∈I λv), where the contribution of the empty set is fixed to 1. Similar to the235

univariate hard-core model, the Gibbs distribution assigns a probability to each independent236

set proportionally to its contribution to the partition function.237

As we discussed before, the main problem with approximating the partition function of238

our discretization (Gρ, λρ) is that the required graph Gρ is exponential in the volume of239

the original continuous system |V|. As the Glauber dynamics Markov chain only updates240

a single vertex at each step, the resulting mixing time is usually polynomial in the size of241

the graph, which is not feasible in our case. Various extensions to Glauber dynamics for242

updating multiple vertices in each step have been proposed in the literature, two of which243

we discuss in the following.244

Clique dynamics245

Recently, in [23] a Markov chain, called clique dynamics, was introduced in order to efficiently246

sample from the Gibbs distribution of abstract polymer models. Note that this is similar247

to our algorithmic problem, as abstract polymer models resemble multivariate hard-core248

instances. For a given graph G = (V, E), we call a set Λ = {Λi}i∈[m] ⊆ 2V a clique cover249

of size m if and only if its union covers all vertices V and each Λi ∈ Λ induces a clique in250

G. For an instance of the multivariate hard-core model (G, λ) and a given clique cover Λ of251

G with size m the clique dynamics Markov chain C(G, λ, Λ) is defined as follows. First, a252

clique Λi ∈ Λ for i ∈ [m] is chosen uniformly at random. Let us write G[Λi] for the subgraph,253

induced by Λi, and λ[Λi] = {λv}v∈Λi
for the corresponding set of vertex weights. Next, an254

independent set from I(G[Λi]) is chosen according to the Gibbs distribution µ(G[Λi],λ[Λi]).255

Note that, as the vertices Λi form a clique, such an independent set is either the empty set256

or contains a single vertex from v ∈ Λi. If the empty set is drawn, all vertices from Λi are257

removed from the current independent set. Otherwise, if a single vertex v ∈ Λi is drawn, the258

chain tries to add v to the current independent set.259

Using a coupling argument, it was proven in [23] that the so-called clique dynamics260

condition implies that for any clique cover of size m the clique dynamics are mixing in time261

polynomial in m and Zmax, where Zmax = maxi∈[m]{Z(G[Λi], λ[Λi])} denotes the maximum262

partition function of a clique in Λ. This is important for the application to polymer models, as263
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they are usually used to model partition functions of other spin systems, which often results264

in a multivariate hard-core model of exponential size [33, 9, 35, 10, 6, 8, 26]. As discussed in265

[23], those instances tend to have polynomial size clique covers that arise naturally from the266

original spin system. In such cases, the mixing time of clique dynamics is still polynomial in267

the size of original spin system, as long as the clique dynamics condition is satisfied.268

This is very similar to our discretization (Gρ, λρ). To see this, set a = 2ρ√
d
r and divide the269

d-dimensional integer lattice of side length ρℓ into cubic regions of side length a. Every pair of270

integer points within such a cubic region has Euclidean distance less than 2ρr, meaning that271

the corresponding vertices in Gρ are adjacent. Thus, each such cubic region forms a clique,272

resulting in a clique cover of size (ρℓ/a)d ∈ O(|V|). This means, there is always a clique273

cover with size linear in |V| and independent of the resolution ρ. By showing that, for the274

univariate hard-core model, the mixing time of clique dynamics is polynomial in the size of275

the clique cover for all λρ < λc(∆ρ), we obtain a Markov chain with mixing time polynomial276

in |V| independent of the resolution ρ. Unfortunately, the clique dynamics condition does277

not hold for the entire regime up to the tree threshold in the univariate hard-core model.278

We overcome this problem by proving a new condition for rapid mixing of clique dynamics279

based on a comparison with block dynamics.280

Block dynamics281

Block dynamics are a very natural generalization of Glauber dynamics to arbitrary sets of282

vertices. For a given graph G = (V, E), we call a set Λ = {Λi}i∈[m] ⊆ 2V a block cover of size283

m if and only if its union covers all vertices V . We refer to the elements of Λ as blocks. Note284

that the clique cover discussed before is a special case of a block cover, where all blocks are285

restricted to be cliques. At each step, the block dynamics Markov chain B(G, λ, Λ) chooses286

a block Λi ∈ Λ uniformly at random. Then, the current independent set is updated on Λi287

based on the projection of the Gibbs distribution onto Λi and conditioned on the current288

independent set outside Λi.289

In fact, block dynamics are defined for a much more general class of spin systems than290

the hard-core model. However, due to the fact that each step of the Markov chain involves291

sampling from a conditional Gibbs distribution, block dynamics are rarely used as an292

algorithmic tool on its own. Instead, they are usually used to deduce rapid mixing of other293

dynamics.294

For spin systems on lattice graphs, close connections between the mixing time of block295

dynamics and Glauber dynamics are known [40]. Such connections were for example applied296

to improve the mixing time of Glauber dynamics of the Monomer Dimer model on torus297

graphs [51]. Moreover, block dynamics were used to improve conditions for rapid mixing298

of Glauber dynamics on specific graph classes, such as proper colorings [16, 18, 19, 44] or299

the hard-core model [18, 44] in sparse random graphs. A very general result for the mixing300

time of block dynamics was achieved in [4], who proved that for all spin systems on a finite301

subgraph of the d-dimensional integer lattice the mixing time of block dynamics is polynomial302

in the number of blocks if the spin system exhibits strong spatial mixing. This result was303

later generalized in [5] for the Ising model on arbitrary graphs. Very recently, block dynamics304

based random equally-sized blocks where used in [12] to prove entropy factorization and305

improve the mixing time of Glauber dynamics for a variety of discrete spin systems up to306

the tree threshold.307

Although our discretization works by restricting sphere positions to the integer lattice,308

the resulting graph is rather different from the lattice. Thus, results like those in [4] do not309

apply to our setting. However, on the other hand, we do not need to prove rapid mixing for310
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61:8 A spectral independence view on hard spheres via block dynamics

arbitrary block covers. Instead, in order to obtain rapid mixing for clique dynamics, it is311

sufficient to establish this result for cases where all blocks are cliques.312

Applying block dynamics directly would involve sampling from a conditional Gibbs313

distribution within each clique. Due to the exponential size of the cliques in our discretization,314

this would impose additional algorithmic challenges. Instead, similar to the previous literature,315

we rather use block dynamics as a tool for proving rapid mixing of another Markov chain,316

namely clique dynamics.317

Improved mixing condition for clique dynamics via block dynamics318

We analyze the mixing time of clique dynamics for a given clique cover by relating it to the319

mixing time of block dynamics, using the cliques as blocks. This is done by investigating320

a notion of pairwise influence between vertices that has also been used to establish rapid321

mixing of Glauber dynamics up to the tree threshold [2]. Let PG[w] denote the probability322

of the event that a vertex w ∈ V is in an independent set drawn from µ(G,λ). Further, let323

PG[w] denote the probability that w is not in an independent set. We extend this abuse324

of notation to conditional probabilities, so PG[· | w ] for example denotes the probability of325

some event conditioned on w not being in an independent set. For a pair of vertices v, w ∈ V326

the influence ΨG(v, w) of v on w is defined as327

ΨG(v, w) =
{

0 if v = w,

PG[w | v ] − PG[w | v ] otherwise.
328

The following condition in terms of pairwise influence is central to our analysis.329

▶ Condition 3. Let (G, λ) be an instance of the multivariate hard-core model. There is a330

constant C ∈ R>0 and a function q : V → R>0 such that for all S ⊆ V and r ∈ S it holds331

that332 ∑
v∈S

|ΨG(r, v)|q(v) ≤ Cq(r).333

Note that this condition appeared before in [13], where it was used for bounding the mixing334

time of Glauber dynamics for anti-ferromagnetic spin systems. Given Condition 3, we obtain335

the following result for the mixing time of block dynamics based on a clique cover.336

▶ Theorem 4. Let (G, λ) be an instance of the multivariate hard-core model that satisfies Con-337

dition 3. Let Λ be a clique cover for G of size m, and let Zmax = maxi∈[m]{Z(G[Λi], λ[Λi])}.338

The mixing time of the block dynamics B(G, λ, Λ), starting from ∅ ∈ I(G), is bounded by339

τ
(∅)
B (ε) ≤ mO((2+C)C)ZO((2+C)C)

max ln
(

1
ε

)
.340

Using a bound for the sum of absolute pairwise influences that was recently established341

in [13], it follows that the univariate hard-core model satisfies Condition 3 up to the tree342

threshold. As a result, we know that the mixing time of block dynamics is polynomial in m343

and Zmax for any clique cover of size m. To the best of our knowledge, this is the first result344

for the mixing time of block dynamics for the univariate hard-core model on general graphs345

that holds in this parameter range.346

As we aim to apply clique dynamics to avoid sampling from the conditional Gibbs347

distribution in each step, we still need to prove that Theorem 4 also holds in terms of clique348

dynamics. To this end, we apply a Markov chain comparison argument from [15] to prove349
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that using clique dynamics instead of block dynamics for the same clique cover Λ increases350

the mixing time by at most a factor 2Zmax. The following corollary, which is central for351

proving Theorem 1, follows immediately.352

▶ Corollary 5. Let (G, λ) be an instance of the univariate hard-core model such that353

the degree of G is bounded by ∆. Let Λ be a given clique cover of size m with Zmax =354

maxi∈[m]{Z(G[Λi], λ)}. Denote by C = C(G, λ, Λ) the corresponding clique dynamics. If355

there is some δ ∈ R>0 such that λ ≤ (1−δ)λc(∆) then the mixing time of the clique dynamics356

C, starting from ∅ ∈ I(G), is bounded by357

τ
(∅)
C (ε) ≤ mO(1/δ2)Z

O(1/δ2)
max ln

(
1
ε

)
.358

A side journey: comparison to multivariate conditions359

In fact, Corollary 5 is sufficient for our application to the hard-sphere model. However, we360

also aim to set Condition 3 in the context of other conditions for rapid mixing of clique361

dynamics for the multivariate hard-core model. Note that such a rapid mixing result for362

clique dynamics caries over to Glauber dynamics by taking each vertex as a separate clique363

of size 1.364

To this end, we compare Condition 3 to a strict version of the clique dynamics condition,365

originally introduced in [23] in the setting of clique dynamics for abstract polymer models. It366

turns out that this strict version of the clique dynamics condition directly implies Condition 3.367

This is especially interesting, as the clique dynamics condition was initially introduced as a368

local condition (only considering the neighborhood of each vertex) and is based on a coupling369

argument. However, we show that it can as well be understood as a sufficient condition for370

the global decay of pairwise influence with increasing distance between vertices.371

Formally, we say that the strict clique dynamics condition is satisfied for an instance of372

the multivariate hard-core model (G, λ) if there is a function f : V → R>0 and a constant373

α ∈ (0, 1) such that for all v ∈ V it holds that374 ∑
w∈N(v)

λw

1 + λw
f(w) ≤ (1 − α)f(v),375

where N(v) is the neighborhood of v in G. This is a strict version of the clique dynamics376

condition in that the original clique dynamics condition would correspond to the case α = 0377

(i.e., the strict clique dynamics condition requires some strictly positive slack α).378

The result of our comparison is summarized in the following statement.379

▶ Lemma 6. Let (G, λ) be an instance of the multivariate hard-core model. If (G, λ) satisfies380

the strict clique dynamics condition for a function f and a constant α, then it also satisfies381

Condition 3 for q = f and C = 1
α .382

Lemma 6 is proven by translating the calculation of pairwise influences to the self-avoiding383

walk tree of the graph, based on a result in [13], and applying a recursive argument on this384

tree.385

Despite being an interesting relationship between local coupling arguments and global386

pairwise influence, Lemma 6 also implies that, from an algorithmic perspective, Theorem 4387

can be used to produce similar results as those obtained in [23] for abstract polymer models.388

Further, note that for the univariate model, using pairwise influence yields strictly better389

results than any coupling approach in the literature. This raises the question if a refined390
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argument based on pairwise influences can be used in the multivariate setting to improve on391

the clique dynamics condition, leading to better approximation results on abstract polymer392

models.393

1.3 Analyzing spectral expansion394

As core technique for obtaining Theorem 4, we adapt an approach for bounding the mixing395

time that was recently used to prove rapid mixing of Glauber dynamics for the entire regime396

below the tree threshold for several applications, such as the hard-core model [2], general397

two-state spin systems [13], and proper colorings [11, 21]. The idea is to map the desired398

distribution to a weighted simplicial complex.399

A simplicial complex X over a groundset U is a set family X ⊆ 2U such that for each400

τ ∈ X every subset of τ is also in X. We call the elements τ ∈ X the faces of X and refer to401

its cardinality |τ | as dimensionality.402

For a univariate hard-core instance (G, λ), the authors of [2] construct a simplicial complex403

over a ground set U that contains two elements xv, xv ∈ U for each vertex v ∈ V . For every404

independent set I ∈ I(G), a face τI ∈ X is introduced such that xv ∈ τI if v ∈ I and xv ∈ τI405

otherwise. The simplicial complex is completed by taking the downward closure of these faces.406

Note that by construction all maximum faces of the resulting complex are |V |-dimensional407

and there is a one-to-one correspondence between the maximum faces and the independent408

sets in I(G). By assigning each maximum face τI ∈ X an appropriate weight, the Glauber409

dynamics can be represented as a random walk on those maximum faces, which is sometimes410

referred to as the two-step walk or down-up walk. Using a local-to-global theorem [1], the411

mixing time of this two-step walk can then be bounded based on certain local expansion412

properties of the simplicial complex X. It is then proved that such local expansion properties413

are well captured by the largest eigenvalue of the pairwise influence matrix ΨG, which is414

a |V | × |V | matrix that contains the pairwise influence ΨG(v, w) for all v, w ∈ V . Finally,415

by bounding those influences a bound on this largest eigenvalue of ΨG is obtained. This416

analysis was later refined and generalized in [13] to general two-state spin systems.417

This method was independently extended in [11] and [21] to the non-Boolean domain418

by applying it to the Glauber dynamics for proper colorings. The main differences to the419

Boolean domain are that elements of the simplicial complex now represent combinations of a420

vertex and a color. Furthermore, the bound on the local spectral expansion was obtained by421

using a different influence matrix, which captures the effect of selecting a certain color for422

one vertex on the distribution of colors for another vertex.423

Although we are dealing with the hard-core model, which is Boolean in nature, the way424

that we model block dynamics is mainly inspired by the existing work on proper colorings425

[11]. Assume we have an instance of the multivariate hard-core model (G, λ) and let Λ be a426

clique cover for G of size m such that every pair of distinct cliques is vertex-disjoint (i.e., Λ427

is a partition of G into cliques). We construct a simplicial complex X based on a ground428

set U that contains one element xv ∈ U for each vertex v ∈ V and one additional element429

∅i for each clique Λi ∈ Λ. We introduce a face τI ∈ X for each independent set I ∈ I(G)430

such that for every Λi ∈ Λ we have ∅i ∈ τI if Λi ∩ I = ∅ and xv ∈ τI if Λi ∩ I = {v} for431

some v ∈ Λi. The simplicial complex is completed by taking the downward closure of these432

faces. All maximum faces of the resulting complex are m-dimensional and there is a bijection433

between the maximum faces and the independent sets of G. Furthermore, there is a natural434

partitioning {Ui}i∈[m] of the ground set U , each partition Ui corresponding to a clique Λi,435

such that every maximum face in X contains exactly one element from each partition Ui.436

By weighting each maximum face of X by the contribution of the corresponding inde-437
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pendent set to the partition function, the block dynamics based on Λ are equivalent to the438

two-step walk on X. Thus, in order to bound the mixing time of the block dynamics, it is439

sufficient to study the local expansion properties of X. To this end, we adapt the influence440

matrix used for proper colorings in [11]. For x ∈ U , let PG[x] denote the probability that441

x ∈ τI for an independent set I ∈ I(G) drawn from µ(G,λ) and corresponding maximum face442

τI ∈ X. Similarly as for defining pairwise influences, we extend this notation to conditional443

probabilities. The clique influence matrix ΦG,Λ contains an entry ΦG,Λ(x, y) for each x, y ∈ U444

with445

ΦG,Λ(x, y) =
{

0 if x, y ∈ Ui for some i ∈ [m],
PG[y | x ] − PG[y] otherwise.

446

By using similar linear-algebraic arguments as in [11] we prove that the maximum eigenvalue447

of ΦG,Λ can be used to upper bound the local spectral expansion of X. To obtain Theorem 4448

it is then sufficient to relate Condition 3 to the maximum eigenvalue of ΦG,Λ. The following449

lemma establishes this connection.450

▶ Lemma 7. Let (G, λ) be an instance of the multivariate hard-core model that satisfies451

Condition 3 for a function q and a constant C. For every S ⊆ V and every disjoint clique452

cover Λ of G[S] it holds that the largest eigenvalue of ΦG[S],Λ is at most (2 + C)C.453

Note that our simplicial-complex representation is only given under the assumption that454

the cliques in the clique cover Λ are pairwise disjoint. Indeed, this is a necessary requirement455

to map the block dynamics to the two-step walk such that the local-global-theorem from [1]456

can be applied. Thus, Lemma 7 only helps to prove Theorem 4 for disjoint clique covers.457

However, we relax this requirement by proving that for every clique cover Λ a disjoint clique458

cover K can be constructed such that the block dynamics B(G, λ, Λ) and B(G, λ, K) have459

asymptotically the same mixing time. By this comparison argument, we extend Theorem 4460

to arbitrary clique covers.461

We are aware that, in the case of Glauber dynamics, more recent techniques for combining462

simplical complex representations with entropy factorization as proposed in [12] yield superior463

mixing time results. However, in case of the hard-core model, this approach comes with464

an additional multiplicative factor of ∆O(∆2) in the mixing time (see section 8 of [12]).465

Although negligible for bounded degree graphs, this would be too much for our application,466

as the degree of our discretization gets exponentially large in the continuous volume |V| of467

the system. Thus, directly relating local spectral expansion with the spectral gap of block468

dynamics is more suitable in our case. We leave as an open question, whether a modification469

of the approach in [12] can be applied to further improve our mixing time result.470

1.4 Outlook471

We obtain the fugacity bound from Theorem 1 based on the tree threshold λc(∆) of the472

hard-core model. An obvious question is whether there are any structural properties of our473

discretization that can be used to improve this bound. Similar results are known for specific474

graph classes, such as the 2-dimensional square lattice [48, 52, 54]. In [42] the authors discuss475

that a generalization of the connective constant to the continuous Euclidean space might476

be applicable to improve their uniqueness result for the hard-sphere model. A comparable477

algorithmic result was already established for the discrete hard-core model in [49]. However,478

any such improvement for our discretization would require the connective constant of Gρ to479

be at least by a constant factor small than its maximum degree ∆ρ. Unfortunately, due to a480
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result in [47], this is not the case. Although this does not necessarily imply that a similar481

concept does not work in continuous space, it gives a strong evidence that a more specialized482

tool instead of the connective constant might be required.483

A different direction for future work is to see which other quantities and properties of the484

model are preserved under discretization. This would especially include the thermodynamic485

pressure and its analyticity. As a matter of fact, non-analytic points of the pressure along the486

positive real axis of fugacity in the thermodynamic limit are known to mark phase transitions487

in infinite volume systems (see for example [42]). One way to approach this could be to prove488

a relation between zero-freeness of the continuous and the discretized partition function in a489

complex neighborhood of the real axis by extending our convergence result to the complex490

domain. Along this line, insights could be gained in how far properties like correlation decay491

and phase transitions (or their absence) are preserved under sufficiently fine discretization.492

From a purely technical point of view, it is interesting to see if our result on the mixing493

time of block dynamics in Theorem 4 also holds without the requirement of using cliques as494

blocks. Especially: is the mixing time for block dynamics for the univariate hard-core model495

polynomial in the number of blocks for any block cover? Most of our techniques that we use496

for clique covers, such as modeling the distribution as a simplicial complex and relating its497

local spectral expansion to the clique influence matrix, can be generalized in a straightforward498

way for different choices of blocks. However, the main difficulty is to relate generalized499

versions of the clique influence matrix to pairwise influences, as we do in Lemma 7. One way500

to circumvent this might be to not rely on pairwise influences at all but to rather investigate501

the influence matrix directly, for example, via different computational-tree methods.502

Finally, it would be interesting to see if approaches like ours can be extended to other503

continuous models from statistical physics (see for example coarse-graining [20]). We believe504

that the variety of tools that are already established for discrete spin systems are useful in505

this setting to establish rigorous computational results for different continuous models. We506

emphasize that clique and block dynamics are a useful computational tool to handle the507

exponential blow-ups caused by discretization.508
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