Friedrich, Tobias; Göbel, Andres; Klodt, Nicolas; Krejca, Martin S.; Pappik, Marcus Analysis of the survival time of the SIRS process via expansionElectronic Journal of Probability 2024: 1–29
We study the SIRS process---a continuous-time Markov chain modeling the spread of infections on graphs. In this model, vertices are either susceptible, infected, or recovered. Each infected vertex becomes recovered at rate 1 and infects each of its susceptible neighbors independently at rate~\(\lambda\), and each recovered vertex becomes susceptible at a rate~\(\varrho\), which we assume to be independent of the graph size. A central quantity of the SIRS process is the time until no vertex is infected, known as the survival time. Surprisingly though, to the best of our knowledge, all known rigorous theoretical results that exist so far immediately carry over from the related SIS model and do not completely explain the behavior of the SIRS process. We address this imbalance by conducting theoretical analyses of the SIRS process via the expansion properties of the underlying graph. Our first result shows that the expected survival time of the SIRS process on stars is at most polynomial in the graph size for any value of~\(\lambda\). This behavior is fundamentally different from the SIS process, where the expected survival time is exponential already for small infection rates. This raises the question of which graph properties result in an exponential survival time. Our main result is an exponential lower bound of the expected survival time of the SIRS process on expander graphs. Specifically, we show that on expander graphs \(G\) with \(n\) vertices, degree close to \(d\), and sufficiently small spectral expansion, the SIRS process has expected survival time at least exponential in \(n\) when \(\lambda \geq c/d\) for a constant \(c > 1\). Previous results on the SIS process show that this bound is almost tight. Additionally, our result holds even if \(G\) is a subgraph. Notably, our result implies an almost-tight threshold for Erdos-Renyi-graphs and a regime of exponential survival time for complex network models. The proof of our main result draws inspiration from Lyapunov functions used in mean-field theory to devise a two-dimensional potential function and from applying a negative-drift theorem to show that the expected survival time is exponential.
Friedrich, Tobias; Göbel, Andreas; Klodt, Nicolas; Krejca, Martin S.; Pappik, Marcus The Irrelevance of Influencers: Information Diffusion with Re-Activation and Immunity Lasts Exponentially Long on Social Network ModelsAnnual AAAI Conference on Artificial Intelligence 2024
Information diffusion models on networks are at the forefront of AI research. The dynamics of such models typically follow stochastic models from epidemiology, used to model not only infections but various phenomena, including the behavior of computer viruses and viral marketing campaigns. A core question in this setting is how to efficiently detect the most influential vertices in the host graph such that the infection survives the longest. In processes that incorporate re-infection of the vertices, such as the SIS process, theoretical studies identify parameter thresholds where the survival time of the process rapidly transitions from logarithmic to super-polynomial. These results contradict the intuition that the starting configuration is relevant, since the process will always either die out fast or survive almost indefinitely. A shortcoming of these results is that models incorporating short-term immunity (or creative advertisement fatigue) have not been subjected to such a theoretical analysis so far. We reduce this gap in the literature by studying the SIRS process, a more realistic model, which besides re-infection additionally incorporates short-term immunity. On complex network models, we identify parameter regimes for which the process survives exponentially long, and we get a tight threshold for random graphs. Underlying these results is our main technical contribution, showing a threshold behavior for the survival time of the SIRS process on graphs with large expander subgraphs, such as social network models.
Friedrich, Tobias; Göbel, Andreas; Klodt, Nicolas; Krejca, Martin S.; Pappik, Marcus From Market Saturation to Social Reinforcement: Understanding the Impact of Non-Linearity in Information Diffusion ModelsThe 23rd International Conference on Autonomous Agents and Multi-Agent Systems 2024
Diffusion of information in networks is at the core of many problems in AI. Common examples include the spread of ideas and rumors as well as marketing campaigns. Typically, information diffuses at a non-linear rate, for example, if markets become saturated or if users of social networks reinforce each other's opinions. Despite these characteristics, this area has seen little research, compared to the vast amount of results for linear models, which exhibit less complex dynamics. Especially, when considering the possibility of re-infection, no fully rigorous guarantees exist so far. We address this shortcoming by studying a very general non-linear diffusion model that captures saturation as well as reinforcement. More precisely, we consider a variant of the SIS model in which vertices get infected at a rate that scales polynomially in the number of their infected neighbors, weighted by an infection coefficient \(\lambda\). We give the first fully rigorous results for thresholds of \(\lambda\) at which the expected survival time becomes super-polynomial. For cliques we show that when the infection rate scales sub-linearly, the threshold only shifts by a poly-logarithmic factor, compared to the standard SIS model. In contrast, super-linear scaling changes the process considerably and shifts the threshold by a polynomial term. For stars, sub-linear and super-linear scaling behave similar and both shift the threshold by a polynomial factor. Our bounds are almost tight, as they are only apart by at most a poly-logarithmic factor from the lower thresholds, at which the expected survival time is logarithmic.