Clean Citation Style 002
{ "authors" : [{ "lastname":"Bläsius" , "initial":"T" , "url":"https://hpi.de/friedrich/publications/people/thomas-blaesius.html" , "mail":"thomas.blasius(at)hpi.de" }, { "lastname":"Casel" , "initial":"K" , "url":"https://hpi.de/friedrich/publications/people/katrin-casel.html" , "mail":"katrin.casel(at)hpi.de" }, { "lastname":"Chauhan" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/ankit-chauhan.html" , "mail":"ankit.chauhan(at)hpi.de" }, { "lastname":"Cohen" , "initial":"S" , "url":"https://hpi.de/friedrich/publications/people/sarel-cohen.html" , "mail":"sarel.cohen(at)hpi.de" }, { "lastname":"Cseh" , "initial":"" , "url":"https://hpi.de/friedrich/publications/people/agnes-cseh.html" , "mail":"agnes.cseh(at)hpi.de" }, { "lastname":"Doskoč" , "initial":"V" , "url":"https://hpi.de/friedrich/publications/people/vanja-doskoc.html" , "mail":"vanja.doskoc(at)hpi.de" }, { "lastname":"Elijazyfer" , "initial":"Z" , "url":"https://hpi.de/friedrich/people/ziena-elijazyfer.html" , "mail":"ziena.elijazyfer(at)hpi.de" }, { "lastname":"Fischbeck" , "initial":"P" , "url":"https://hpi.de/friedrich/publications/people/philipp-fischbeck.html" , "mail":"philipp.fischbeck(at)hpi.de" }, { "lastname":"Friedrich" , "initial":"T" , "url":"https://hpi.de/friedrich/publications/people/tobias-friedrich.html" , "mail":"friedrich(at)hpi.de" }, { "lastname":"Göbel" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/andreas-goebel.html" , "mail":"andreas.goebel(at)hpi.de" }, { "lastname":"Issac" , "initial":"D" , "url":"https://hpi.de/friedrich/publications/people/davis-issac.html" , "mail":"davis.issac(at)hpi.de" }, { "lastname":"Katzmann" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/maximilian-katzmann.html" , "mail":"maximilian.katzmann(at)hpi.de" }, { "lastname":"Khazraei" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/ardalan-khazraei.html" , "mail":"ardalan.khazraei(at)hpi.de" }, { "lastname":"Kötzing" , "initial":"T" , "url":"https://hpi.de/friedrich/publications/people/timo-koetzing.html" , "mail":"timo.koetzing(at)hpi.de" }, { "lastname":"Krejca" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/martin-krejca.html" , "mail":"martin.krejca(at)hpi.de" }, { "lastname":"Krogmann" , "initial":"S" , "url":"https://hpi.de/friedrich/publications/people/simon-krogmann.html" , "mail":"simon.krogmann(at)hpi.de" }, { "lastname":"Krohmer" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/anton-krohmer.html" , "mail":"none" }, { "lastname":"Kumar" , "initial":"N" , "url":"https://hpi.de/friedrich/publications/people/nikhil-kumar.html" , "mail":"nikhil.kumar(at)hpi.de" }, { "lastname":"Lagodzinski" , "initial":"G" , "url":"https://hpi.de/friedrich/publications/people/gregor-lagodzinski.html" , "mail":"gregor.lagodzinski(at)hpi.de" }, { "lastname":"Lenzner" , "initial":"P" , "url":"https://hpi.de/friedrich/publications/people/pascal-lenzner.html" , "mail":"pascal.lenzner(at)hpi.de" }, { "lastname":"Melnichenko" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/anna-melnichenko.html" , "mail":"anna.melnichenko(at)hpi.de" }, { "lastname":"Molitor" , "initial":"L" , "url":"https://hpi.de/friedrich/publications/people/louise-molitor.html" , "mail":"louise.molitor(at)hpi.de" }, { "lastname":"Neubert" , "initial":"S" , "url":"https://hpi.de/friedrich/publications/people/stefan-neubert.html" , "mail":"stefan.neubert(at)hpi.de" }, { "lastname":"Pappik" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/marcus-pappik.html" , "mail":"marcus.pappik(at)hpi.de" }, { "lastname":"Quinzan" , "initial":"F" , "url":"https://hpi.de/friedrich/publications/people/francesco-quinzan.html" , "mail":"francesco.quinzan(at)hpi.de" }, { "lastname":"Rizzo" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/manuel-rizzo.html" , "mail":"manuel.rizzo(at)hpi.de" }, { "lastname":"Rothenberger" , "initial":"R" , "url":"https://hpi.de/friedrich/publications/people/ralf-rothenberger.html" , "mail":"ralf.rothenberger(at)hpi.de" }, { "lastname":"Schirneck" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/martin-schirneck.html" , "mail":"martin.schirneck(at)hpi.de" }, { "lastname":"Seidel" , "initial":"K" , "url":"https://hpi.de/friedrich/publications/people/karen-seidel.html" , "mail":"karen.seidel(at)hpi.de" }, { "lastname":"Sutton" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/andrew-m-sutton.html" , "mail":"none" }, { "lastname":"Weyand" , "initial":"C" , "url":"https://hpi.de/friedrich/publications/people/christopher-weyand.html" , "mail":"none" }]}
Aziz, Haris; Cseh, Agnes; Dickerson, John; McElfresh, DuncanOptimal Kidney Exchange with Immunosuppressants. Conference on Artificial Intelligence (AAAI) 2021
Bilò, Davide; Friedrich, Tobias; Lenzner, Pascal; Lowski, Stefanie; Melnichenko, AnnaSelfish Creation of Social Networks. Conference on Artificial Intelligence (AAAI) 2021
Kraiczy, Sonja; Cseh, Ágnes; Manlove, DavidOn weakly and strongly popular rankings. International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2021
Aziz, Haris; Chan, Hau; Cseh, Ágnes; Li, Bo; Ramezani, Fahimeh; Wang, ChenhaoMulti-Robot Task Allocation—Complexity and Approximation. International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2021
Casel, Katrin; Schmid, Markus L.Fine-Grained Complexity of Regular Path Queries. International Conference on Database Theory (ICDT) 2021
A regular path query (RPQ) is a regular expression \(q\) that returns all node pairs \((u, v)\) from a graph database that are connected by an arbitrary path labelled with a word from \(L(q)\). The obvious algorithmic approach to RPQ-evaluation (called PG-approach), i.e., constructing the product graph between an NFA for \(q\) and the graph database, is appealing due to its simplicity and also leads to efficient algorithms. However, it is unclear whether the PG-approach is optimal. We address this question by thoroughly investigating which upper complexity bounds can be achieved by the PG-approach, and we complement these with conditional lower bounds (in the sense of the fine-grained complexity framework). A special focus is put on enumeration and delay bounds, as well as the data complexity perspective. A main insight is that we can achieve optimal (or near optimal) algorithms with the PG-approach, but the delay for enumeration is rather high (linear in the database). We explore three successful approaches towards enumeration with sub-linear delay: super-linear preprocessing, approximations of the solution sets, and restricted classes of RPQs.
Bläsius, Thomas; Friedrich, Tobias; Göbel, Andreas; Levy, Jordi; Rothenberger, RalfThe Impact of Heterogeneity and Geometry on the Proof Complexity of Random Satisfiability. Symposium on Discrete Algorithms (SODA) 2021
Satisfiability is considered the canonical NP-complete problem and is used as a starting point for hardness reductions in theory, while in practice heuristic SAT solving algorithms can solve large-scale industrial SAT instances very efficiently. This disparity between theory and practice is believed to be a result of inherent properties of industrial SAT instances that make them tractable. Two characteristic properties seem to be prevalent in the majority of real-world SAT instances, heterogeneous degree distribution and locality. To understand the impact of these two properties on SAT, we study the proof complexity of random k-SAT models that allow to control heterogeneity and locality. Our findings show that heterogeneity alone does not make SAT easy as heterogeneous random k-SAT instances have superpolynomial resolution size. This implies intractability of these instances for modern SAT-solvers. On the other hand, modeling locality with an underlying geometry leads to small unsatisfiable subformulas, which can be found within polynomial time. A key ingredient for the result on geometric random k-SAT can be found in the complexity of higher-order Voronoi diagrams. As an additional technical contribution, we show an upper bound on the number of non-empty Voronoi regions, that holds for points with random positions in a very general setting. In particular, it covers arbitrary p-norms, higher dimensions, and weights affecting the area of influence of each point multiplicatively. Our bound is linear in the total weight. This is in stark contrast to quadratic lower bounds for the worst case.