Clean Citation Style
{ "authors" : [{ "lastname":"Bläsius" , "initial":"T" , "url":"https://hpi.de/friedrich/publications/people/thomasblaesius.html" , "mail":"thomas.blasius(at)hpi.de" }, { "lastname":"Casel" , "initial":"K" , "url":"https://hpi.de/friedrich/publications/people/katrincasel.html" , "mail":"katrin.casel(at)hpi.de" }, { "lastname":"Chauhan" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/ankitchauhan.html" , "mail":"ankit.chauhan(at)hpi.de" }, { "lastname":"Doskoč" , "initial":"V" , "url":"https://hpi.de/friedrich/publications/people/vanjadoskoc.html" , "mail":"vanja.doskoc(at)hpi.de" }, { "lastname":"Fischbeck" , "initial":"P" , "url":"https://hpi.de/friedrich/publications/people/philippfischbeck.html" , "mail":"philipp.fischbeck(at)hpi.de" }, { "lastname":"Friedrich" , "initial":"T" , "url":"https://hpi.de/friedrich/publications/people/tobiasfriedrich.html" , "mail":"friedrich(at)hpi.de" }, { "lastname":"Göbel" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/andreasgoebel.html" , "mail":"andreas.goebel(at)hpi.de" }, { "lastname":"Katzmann" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/maximiliankatzmann.html" , "mail":"maximilian.katzmann(at)hpi.de" }, { "lastname":"Kötzing" , "initial":"T" , "url":"https://hpi.de/friedrich/publications/people/timokoetzing.html" , "mail":"timo.koetzing(at)hpi.de" }, { "lastname":"Krejca" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/martinkrejca.html" , "mail":"martin.krejca(at)hpi.de" }, { "lastname":"Krohmer" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/antonkrohmer.html" , "mail":"none" }, { "lastname":"Lagodzinski" , "initial":"G" , "url":"https://hpi.de/friedrich/publications/people/gregorlagodzinski.html" , "mail":"gregor.lagodzinski(at)hpi.de" }, { "lastname":"Lenzner" , "initial":"P" , "url":"https://hpi.de/friedrich/publications/people/pascallenzner.html" , "mail":"pascal.lenzner(at)hpi.de" }, { "lastname":"Melnichenko" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/annamelnichenko.html" , "mail":"anna.melnichenko(at)hpi.de" }, { "lastname":"Molitor" , "initial":"L" , "url":"https://hpi.de/friedrich/publications/people/louisemolitor.html" , "mail":"louise.molitor(at)hpi.de" }, { "lastname":"Neubert" , "initial":"S" , "url":"https://hpi.de/friedrich/publications/people/stefanneubert.html" , "mail":"stefan.neubert(at)hpi.de" }, { "lastname":"Quinzan" , "initial":"F" , "url":"https://hpi.de/friedrich/publications/people/francescoquinzan.html" , "mail":"francesco.quinzan(at)hpi.de" }, { "lastname":"Rizzo" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/manuelrizzo.html" , "mail":"manuel.rizzo(at)hpi.de" }, { "lastname":"Rothenberger" , "initial":"R" , "url":"https://hpi.de/friedrich/publications/people/ralfrothenberger.html" , "mail":"ralf.rothenberger(at)hpi.de" }, { "lastname":"Schirneck" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/martinschirneck.html" , "mail":"martin.schirneck(at)hpi.de" }, { "lastname":"Seidel" , "initial":"K" , "url":"https://hpi.de/friedrich/publications/people/karenseidel.html" , "mail":"karen.seidel(at)hpi.de" }, { "lastname":"Sutton" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/andrewmsutton.html" , "mail":"none" }]}

Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S.; Sutton, Andrew M. The Benefit of Recombination in Noisy Evolutionary Search. International Symposium of Algorithms and Computation (ISAAC) 2015: 140150
Practical optimization problems frequently include uncertainty about the quality measure, for example due to noisy evaluations. Thus, they do not allow for a straightforward application of traditional optimization techniques. In these settings metaheuristics are a popular choice for deriving good optimization algorithms, most notably evolutionary algorithms which mimic evolution in nature. Empirical evidence suggests that genetic recombination is useful in uncertain environments because it can stabilize a noisy fitness signal. With this paper we want to support this claim with mathematical rigor. The setting we consider is that of noisy optimization. We study a simple noisy fitness function that is derived by adding Gaussian noise to a monotone function. First, we show that a classical evolutionary algorithm that does not employ sexual recombination (the \((\mu+1)\)EA) cannot handle the noise efficiently, regardless of the population size. Then we show that an evolutionary algorithm which does employ sexual recombination (the Compact Genetic Algorithm, short: cGA) can handle the noise using a graceful scaling of the population.

Friedrich, Tobias; Katzmann, Maximilian; Krohmer, Anton Unbounded Discrepancy of Deterministic Random Walks on Grids. International Symposium on Algorithms and Computation (ISAAC) 2015: 212222
Random walks are frequently used in randomized algorithms. We study a derandomized variant of a random walk on graphs, called rotorrouter model. In this model, instead of distributing tokens randomly, each vertex serves its neighbors in a fixed deterministic order. For most setups, both processes behave remarkably similar: Starting with the same initial configuration, the number of tokens in the rotorrouter model deviates only slightly from the expected number of tokens on the corresponding vertex in the random walk model. The maximal difference over all vertices and all times is called single vertex discrepancy. Cooper and Spencer (2006) showed that on \(\mathbb{Z}^d\) the single vertex discrepancy is only a constant \(c_d\). Other authors also determined the precise value of \(c_d\) for \(d=1,2\). All these results, however, assume that initially all tokens are only placed on one partition of the bipartite graph \(\mathbb{Z}^d\). We show that this assumption is crucial by proving that otherwise the single vertex discrepancy can become arbitrarily large. For all dimensions \(d \ge 1\) and arbitrary discrepancies \(\ell \ge 0\), we construct configurations that reach a discrepancy of at least \(\ell\).

Friedrich, Tobias; Hebbinghaus, Nils Average Update Times for FullyDynamic AllPairs Shortest Paths. International Symposium of Algorithms and Computation (ISAAC) 2008: 692703
We study the fullydynamic all pairs shortest path problem for graphs with arbitrary nonnegative edge weights. It is known for digraphs that an update of the distance matrix costs \(O(n^{2.75})\) worstcase time Thorup, STOC '05 and \(O(n^2)\) amortized time Demetrescu and Italiano, J.ACM '04 where \(n\) is the number of vertices. We present the first averagecase analysis of the undirected problem. For a random update we show that the expected time per update is bounded by \(O(n^{4/3 + \epsilon)\) for all \(\epsilon > 0\).

Bringmann, Karl; Friedrich, Tobias Approximating the Volume of Unions and Intersections of HighDimensional Geometric Objects. International Symposium on Algorithms and Computation (ISAAC) 2008: 436447
We consider the computation of the volume of the union of highdimensional geometric objects. While showing that this problem is #Phard already for very simple bodies (i.e., axisparallel boxes), we give a fast FPRAS for all objects where one can: (1) test whether a given point lies inside the object, (2) sample a point uniformly, (3) calculate the volume of the object in polynomial time. All three oracles can be weak, that is, just approximate. This implies that Klee's measure problem and the hypervolume indicator can be approximated efficiently even though they are #Phard and hence cannot be solved exactly in time polynomial in the number of dimensions unless P=NP. Our algorithm also allows to approximate efficiently the volume of the union of convex bodies given by weak membership oracles. For the analogous problem of the intersection of highdimensional geometric objects we prove #Phardness for boxes and show that there is no multiplicative polynomialtime \(2^{d^{1\epsilon}}\)approximation for certain boxes unless NP=BPP, but give a simple additive polynomialtime \(\epsilon\)approximation.