Clean Citation Style
{ "authors" : [{ "lastname":"Bläsius" , "initial":"T" , "url":"https://hpi.de/friedrich/publications/people/thomasblaesius.html" , "mail":"thomas.blasius(at)hpi.de" }, { "lastname":"Casel" , "initial":"K" , "url":"https://hpi.de/friedrich/publications/people/katrincasel.html" , "mail":"katrin.casel(at)hpi.de" }, { "lastname":"Chauhan" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/ankitchauhan.html" , "mail":"ankit.chauhan(at)hpi.de" }, { "lastname":"Doskoč" , "initial":"V" , "url":"https://hpi.de/friedrich/publications/people/vanjadoskoc.html" , "mail":"vanja.doskoc(at)hpi.de" }, { "lastname":"Fischbeck" , "initial":"P" , "url":"https://hpi.de/friedrich/publications/people/philippfischbeck.html" , "mail":"philipp.fischbeck(at)hpi.de" }, { "lastname":"Friedrich" , "initial":"T" , "url":"https://hpi.de/friedrich/publications/people/tobiasfriedrich.html" , "mail":"friedrich(at)hpi.de" }, { "lastname":"Göbel" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/andreasgoebel.html" , "mail":"andreas.goebel(at)hpi.de" }, { "lastname":"Katzmann" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/maximiliankatzmann.html" , "mail":"maximilian.katzmann(at)hpi.de" }, { "lastname":"Kötzing" , "initial":"T" , "url":"https://hpi.de/friedrich/publications/people/timokoetzing.html" , "mail":"timo.koetzing(at)hpi.de" }, { "lastname":"Krejca" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/martinkrejca.html" , "mail":"martin.krejca(at)hpi.de" }, { "lastname":"Krohmer" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/antonkrohmer.html" , "mail":"none" }, { "lastname":"Lagodzinski" , "initial":"G" , "url":"https://hpi.de/friedrich/publications/people/gregorlagodzinski.html" , "mail":"gregor.lagodzinski(at)hpi.de" }, { "lastname":"Lenzner" , "initial":"P" , "url":"https://hpi.de/friedrich/publications/people/pascallenzner.html" , "mail":"pascal.lenzner(at)hpi.de" }, { "lastname":"Melnichenko" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/annamelnichenko.html" , "mail":"anna.melnichenko(at)hpi.de" }, { "lastname":"Molitor" , "initial":"L" , "url":"https://hpi.de/friedrich/publications/people/louisemolitor.html" , "mail":"louise.molitor(at)hpi.de" }, { "lastname":"Neubert" , "initial":"S" , "url":"https://hpi.de/friedrich/publications/people/stefanneubert.html" , "mail":"stefan.neubert(at)hpi.de" }, { "lastname":"Quinzan" , "initial":"F" , "url":"https://hpi.de/friedrich/publications/people/francescoquinzan.html" , "mail":"francesco.quinzan(at)hpi.de" }, { "lastname":"Rothenberger" , "initial":"R" , "url":"https://hpi.de/friedrich/publications/people/ralfrothenberger.html" , "mail":"ralf.rothenberger(at)hpi.de" }, { "lastname":"Schirneck" , "initial":"M" , "url":"https://hpi.de/friedrich/publications/people/martinschirneck.html" , "mail":"martin.schirneck(at)hpi.de" }, { "lastname":"Seidel" , "initial":"K" , "url":"https://hpi.de/friedrich/publications/people/karenseidel.html" , "mail":"karen.seidel(at)hpi.de" }, { "lastname":"Sutton" , "initial":"A" , "url":"https://hpi.de/friedrich/publications/people/andrewmsutton.html" , "mail":"none" }]}

Kötzing, Timo; Schirneck, Martin Towards an Atlas of Computational Learning Theory. Symposium on Theoretical Aspects of Computer Science (STACS) 2016: 47:147:13
A major part of our knowledge about Computational Learning stems from comparisons of the learning power of different learning criteria. These comparisons inform about tradeoffs between learning restrictions and, more generally, learning settings; furthermore, they inform about what restrictions can be observed without losing learning power. With this paper we propose that one main focus of future research in Computational Learning should be on a structured approach to determine the relations of different learning criteria. In particular, we propose that, for small sets of learning criteria, all pairwise relations should be determined; these relations can then be easily depicted as a map, a diagram detailing the relations. Once we have maps for many relevant sets of learning criteria, the collection of these maps is an Atlas of Computational Learning Theory, informing at a glance about the landscape of computational learning just as a geographical atlas informs about the earth. In this paper we work toward this goal by providing three example maps, one pertaining to partially setdriven learning, and two pertaining to strongly monotone learning. These maps can serve as blueprints for future maps of similar base structure.

Göbel, Andreas; Goldberg, Leslie Ann; Richerby, David Counting Homomorphisms to Cactus Graphs Modulo 2. Symposium on Theoretical Aspects of Computer Science (STACS) 2014: 350361
A homomorphism from a graph \(G\) to a graph \(H\) is a function from \(V(G)\) to \(V(H)\) that preserves edges. Many combinatorial structures that arise in mathematics and in computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this article, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph \(H\) has a big influence on the complexity of the problem. Thus, our approach is graphtheoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs \(H\), counting homomorphisms to \(H\) modulo 2 can be done in polynomial time. For every other fixed cactus graph \(H\), the problem is complete in the complexity class \(\oplus P\), which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which \(H\) lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which \(H\) is a tree.

Kötzing, Timo A Solution to Wiehagen's Thesis. Symposium on Theoretical Aspects of Computer Science (STACS) 2014: 494505
Wiehagen's Thesis in Inductive Inference (1991) essentially states that, for each learning criterion, learning can be done in a normalized, enumerative way. The thesis was not a formal statement and thus did not allow for a formal proof, but support was given by examples of a number of different learning criteria that can be learned by enumeration. Building on recent formalizations of learning criteria, we are now able to formalize Wiehagen's Thesis. We prove the thesis for a wide range of learning criteria, including many popular criteria from the literature. We also show the limitations of the thesis by giving four learning criteria for which the thesis does not hold (and, in two cases, was probably not meant to hold). Beyond the original formulation of the thesis, we also prove stronger versions which allow for many corollaries relating to strongly decisive and conservative learning.

Antoniadis, Antonios; Hüffner, Falk; Lenzner, Pascal; Moldenhauer, Carsten; Souza, Alexander Balanced Interval Coloring. Symposium on Theoretical Aspects of Computer Science (STACS) 2011: 531542
We consider the discrepancy problem of coloring n intervals with \(k\) colors such that at each point on the line, the maximal difference between the number of intervals of any two colors is minimal. Somewhat surprisingly, a coloring with maximal difference at most one always exists. Furthermore, we give an algorithm with running time \(O(n \log n + k n \log k)\) for its construction. This is in particular interesting because many known results for discrepancy problems are nonconstructive. This problem naturally models a load balancing scenario, where \(n\) tasks with given start and endtimes have to be distributed among \(k\) servers. Our results imply that this can be done ideally balanced. When generalizing to \(d\)dimensional boxes (instead of intervals), a solution with difference at most one is not always possible. We show that for any \(d \ge 2\) and any \(k \ge 2\) it is NPcomplete to decide if such a solution exists, which implies also NPhardness of the respective minimization problem. In an online scenario, where intervals arrive over time and the color has to be decided upon arrival, the maximal difference in the size of color classes can become arbitrarily high for any online algorithm.

Case, John; Kötzing, Timo Measuring Learning Complexity with Criteria Epitomizers. Symposium on Theoretical Aspects of Computer Science (STACS) 2011: 320331
In prior papers, beginning with the seminal work by Freivalds et al. 1995, the notion of intrinsic complexity is used to analyze the learning complexity of sets of functions in a Goldstyle learning setting. Herein are pointed out some weaknesses of this notion. Offered is an alternative based on epitomizing sets of functions  sets, which are learnable under a given learning criterion, but not under other criteria which are not at least as powerful. To capture the idea of epitomizing sets, new reducibility notions are given based on robust learning (closure of learning under certain classes of operators). Various degrees of epitomizing sets are characterized as the sets complete with respect to corresponding reducibility notions! These characterizations also provide an easy method for showing sets to be epitomizers, and they are, then, employed to prove several sets to be epitomizing. Furthermore, a scheme is provided to generate easily very strong epitomizers for a multitude of learning criteria. These strong epitomizers are socalled selflearning sets, previously applied by Case & Koetzing, 2010. These strong epitomizers can be generated and employed in a myriad of settings to witness the strict separation in learning power between the criteria so epitomized and other not as powerful criteria!