Chauhan, Ankit; Friedrich, Tobias; Quinzan, Francesco Approximating Optimization Problems using EAs on Scale-Free Networks. Genetic and Evolutionary Computation Conference (GECCO) 2017: 235-242
It has been experimentally observed that real-world networks follow certain topologicalproperties, such as small-world, power-law etc. To study these networks, many random graph models, such as Preferential Attachment, have been proposed. In this paper, we consider the deterministic properties which capture power-law degree distribution and degeneracy. Networks with these properties are known as scale-free networks in the literature. Many interesting problems remain NP-hard on scale-free networks. We study the relationship between scale-free properties and the approximation-ratio of some commonly used evolutionary algorithms. For the Vertex Cover, we observe experimentally that the \((1+1)\) EA always gives the better result than a greedy local search, even when it runs for only \(O(n, \log(n))\) steps. We give the construction of a scale-free network in which a multi-objective algorithm and a greedy algorithm obtain optimal solutions, while the \((1+1)\) EA obtains the worst possible solution with constant probability. We prove that for the Dominating Set, Vertex Cover, Connected Dominating Set and Independent Set, the \((1+1)\) EA obtains constant-factor approximation in expected run time \(O(n, \log(n))\) and \(O(n^4)\) respectively. Whereas, GSEMO gives even better approximation than \((1+1)\) EA in expected run time \(O(n^3)\) for Dominating Set, Vertex Cover and Connected Dominating Set on such networks.
Chauhan, Ankit; Lenzner, Pascal; Melnichenko, Anna; Molitor, Louise Selfish Network Creation with Non-Uniform Edge Cost. Symposium on Algorithmic Game Theory (SAGT) 2017: 160-172
Network creation games investigate complex networks from a game-theoretic point of view. Based on the original model by Fabrikant et al. [PODC’03] many variants have been introduced. However, almost all versions have the drawback that edges are treated uniformly, i.e. every edge has the same cost and that this common parameter heavily influences the outcomes and the analysis of these games. We propose and analyze simple and natural parameter-free network creation games with non-uniform edge cost. Our models are inspired by social networks where the cost of forming a link is proportional to the popularity of the targeted node. Besides results on the complexity of computing a best response and on various properties of the sequential versions, we show that the most general version of our model has con- stant Price of Anarchy. To the best of our knowledge, this is the first proof of a constant Price of Anarchy for any network creation game.