Prof. Dr. Felix Naumann


Congratulations Uwe Draisbach!

Uwe Draisbach had successfully defended his Ph.D. dissertation on September 21st, 2022 at the HPI! His work is focused on the topic "Efficient Duplicate Detection and the Impact of Transitivity".

Abstract of his work:

Duplicate detection describes the process of finding multiple representations of the same real-world entity in the absence of a unique identifier, and has many application areas, such as customer relationship management, genealogy and social sciences, or online shopping. Due to the increasing amount of data in recent years, the problem has become even more challenging on the one hand, but has led to a renaissance in duplicate detection research on the other hand.
This thesis examines the effects and opportunities of transitive relationships on the duplicate detection process. Transitivity implies that if record pairs (ri, rj) and (rj, rk) are classified as duplicates, then also record pair (ri, rk) has to be a duplicate. However, this reasoning might contradict with the pairwise classification, which is usually based on the similarity of objects. An essential property of similarity, in contrast to equivalence, is that similarity is not necessarily transitive.
First, we experimentally evaluate the effect of an increasing data volume on the threshold selection to classify whether a record pair is a duplicate or non-duplicate. Our experiments show that independently of the pair selection algorithm and the used similarity measure, selecting a suitable threshold becomes more difficult with an increasing number of records due to an increased probability of adding a false duplicate to an existing cluster. Thus, the best threshold changes with the dataset size, and a good threshold for a small (possibly sampled) dataset is not necessarily a good threshold for a larger (possibly complete) dataset. As data grows over time, earlier selected thresholds are no longer a suitable choice, and the problem becomes worse for datasets with larger clusters.
Second, we present with the Duplicate Count Strategy (DCS) and its enhancement DCS++ two alternatives to the standard Sorted Neighborhood Method (SNM) for the selection of candidate record pairs. DCS adapts SNMs window size based on the number of detected du­plicates and DCS++ uses transitive dependencies to save complex comparisons for finding duplicates in larger clusters. We prove that with a proper ( domain- and data-independent!) threshold, DCS++ is more efficient than SNM without loss of effectiveness.
Third, we tackle the problem of contradicting pairwise classifications. Usually, the transitive closure is used for pairwise classifications to obtain a transitively closed result set. However, the transitive closure disregards negative classifications. We present three new and several existing clustering algorithms and experimentally evaluate them on various datasets and under various algorithm configurations. The results show that the commonly used transitive closure is inferior to most other clustering algorithms, especially for the precision of results. In scenarios with larger clusters, our proposed EMCC algorithm is, together with Markov Clustering, the best performing clustering approach for duplicate detection, although its runtime is longer than Markov Clustering due to the sub-exponential time complexity. EMCC especially outperforms Markov Clustering regarding the precision of the results and additionally has the advantage that it can also be used in scenarios where edge weights are not available.