In cooperation with AT&T Research, we are happy that our PVLDB vision paper “Exploring Change - A New Dimension of Data Analytics” has been accepted.
Authors: Tobias Bleifuß (HPI), Leon Bornemann (HPI), Theodore Johnson (AT&T Labs – Research), Dmitri V. Kalashnikov (AT&T Labs – Research), Felix Naumann (HPI), Divesh Srivastava (AT&T Labs – Research)
Find short abstract below:
Data and metadata in datasets experience many different kinds of change. Values are inserted, deleted or updated; rows appear and disappear; columns are added or repurposed, etc. In such a dynamic situation, users might have many questions related to changes in the dataset, for instance which parts of the data are trustworthy and which are not? Users will wonder: How many changes have there been in the recent minutes, days or years? What kind of changes were made at which points of time? How dirty is the data? Is data cleansing required? The fact that data changed can hint at different hidden processes or agendas: a frequently crowd-updated city name may be controversial; a person whose name has been recently changed may be the target of vandalism; and so on. We show various use cases that benefit from recognizing and exploring such change. We envision a system and methods to interactively explore such change, addressing the variability dimension of big data challenges. To this end, we propose a model to capture change and the process of exploring dynamic data to identify salient changes. We provide exploration primitives along with motivational examples and measures for the volatility of data. We identify technical challenges that need to be addressed to make our vision a reality, and propose directions of future work for the data management community.