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ABSTRACT
Wikipedia is the largest encyclopedia to date. Scattered among its
articles, there is an enormous number of tables that contain struc-
tured, relational information. In contrast to database tables, these
webtables lack metadata, making it difficult to automatically inter-
pret the knowledge they harbor. The natural key is a particularly
important piece of metadata, which acts as a primary key and con-
sists of attributes inherent to an entity. Determining natural keys
is crucial for many tasks, such as information integration, table
augmentation, or tracking changes to entities over time.

To address this challenge, we formally define the notion of nat-
ural keys and propose a supervised learning approach to auto-
matically detect natural keys in Wikipedia tables using carefully
engineered features. Our solution includes novel features that ex-
tract information from time (a table’s version history) and space
(other similar tables). On a curated dataset of 1,000 Wikipedia table
histories, our model achieves 80% F-measure, which is at least 20%
more than all related approaches. We use our model to discover
natural keys in the entire corpus of Wikipedia tables and provide
the dataset to the community to facilitate future research.
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1 MOTIVATING NATURAL KEYS
Tables on the web are a significant source of structured information.
In particular, just the English version of Wikipedia contains more
than 1 million tables as of 11/2017, many of which are relational.
When interpreting such webtables, it is especially important to
identify the contained entities, as these are needed for many impor-
tant applications, such as information integration [10], extending
knowledge bases [18] or change exploration [4].

Prior work has frequently used the notion of subject column
to identify entities in relational webtables. The subject column
is commonly understood to be “a column that lists the entities
the table is about” [3]. There exist several approaches to discover
subject columns in a relational webtable [3, 14, 25]. While these
approaches achieve high accuracy, using only subject columns to
identify entities imposes a limitation on the types of identifiers
that can be discovered. For example, subject column discovery
approaches usually discard numeric columns, which in practice can
bemeaningful identifiers, such as years or uniform numbers in sport
events. Furthermore, entity identifiers may be split into multiple
columns, which by definition cannot be detected by subject column
discovery approaches. Examples of such multi-column identifiers
are name and year for scientific conferences, or athlete and event
for the results of a nation at the Olympic Games.

To solve these shortcomings, we propose to use the natural key
as the main tool to identify entities in tables found in Wikipedia
articles (in the following called Wikipedia tables). We formalize our
understanding of a natural key below. Until then, the notion of a
natural key can intuitively be understood as an extension of the
subject column concept to allow for multi-column identifiers and
context-aware identifiers. Besides identifying entities, the natural
key is also an important metadata, that can facilitate many impor-
tant tasks, such as information integration and table augmentation.
For example, they serve as points of reference for creators of other
tables, and enable reference discovery. It should be noted that the
problem of natural key discovery in webtables is not solved by
well-known knowledge bases, such as Wikidata or Yago, as these
knowledge bases use surrogate keys to identify their contained
entities and also do not use any automatic import from tabular data
in Wikipedia. Thus, many facts from relational tables in Wikipedia
are not contained in commonly used knowledge bases.
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While we are not aware of any formal definition of natural keys
in scientific literature, there are commonly accepted definitions for
the natural key. For example, Wikipedia defines a natural key as a
“type of unique key in a database formed of attributes that exist and
are used in the external world outside the database”1. Even though
this definition is good at providing the initial intuition, we, however,
claim that it is not sufficient. For example, the exact box-office gross
of a movie is a real-world attribute and can be expected to be unique
for all notable movies. Such an attribute is not a good choice for a
natural key, because its values are constantly changing while the
movie is in theaters. Even for movies that are no longer in theaters,
it would be difficult to look up more information about a movie
given only its box-office gross (instead of its title, for example). We
thus propose the following, more useful formal definition:

Definition 1.1. A global natural key of a tableT is a set of columns
C that has the following properties

(1) Keyness: C has all syntactical properties of a primary key
in T and each value of C identifies an entity globally.

(2) Temporal Stability: Values of C are stable across time.
(3) Spatial Identifiability: Independent sources identify the

values of C as identifiers.

The two additional aspects of temporal stability and spatial iden-
tifiability distinguish our definition from existing definitions. Tem-
poral stability demands that a global natural key must also be a key
in all past or future versions ofT with the same schema, essentially
ruling out candidates that are unique by chance. Spatial identifia-
bility in a corpus of tables means that the values of a natural key
actually need to be used by different sources, for example as keys
or foreign keys of other, independently created tables.

Definition 1.1 specifies the concept of a natural key abstractly,
but limits natural keys to unambiguous, global identifiers. This is
problematic, because many tables in Wikipedia (and webtables in
general) contain only local identifiers. An example of such a table is
shown in Figure 1(A), which contains information about the seasons
of the TV show “Game of Thrones". Within the context of the page,
Season is a good identifier, but by itself cannot serve as a global
natural key: its values could identify the seasons of any TV show
or even the seasons of the year. However, by adding contextual
information as constant columns to the table (Figure 1(B)), a global
natural key can be found: the combination of Season and Page Title.
This leads us to the notion of a local natural key:

Definition 1.2. Given a table T and a set of constant columns C ′,
taken from T ’s context, C is a local natural key of T , if C ⊆ T and
there exists a subset of all context columns C̃ ⊆ C ′, such thatC ∪ C̃
satisfies all conditions of a global natural key.

Intuitively, this means that local natural keys can become global
natural keys by adding the right context. The context of a table can
typically include its caption, section header, and page title or URL.
It is clear that every global natural key is also a local natural key.
Hence, whenever we mention local natural keys in the rest of this
paper, we implicitly mean local natural keys that are not also global
natural keys. If we simply mention natural keys we implicitly mean
both local and global natural keys.

1https://en.wikipedia.org/wiki/Natural_key (as of October 7, 2019)

Figure 1: A table on the Wikipedia page about Game of
Thrones (the TV show).

It is easy to see that natural keys can have very different appear-
ances depending on the domain: Movie titles look very different
from year numbers, which again look very different from ISBNs
or the combination of title, author, and venue. Consecutively in-
creasing values can be valid natural keys (season numbers of a TV
show, as in Figure 1) or generic row numbers that have no semantic
meaning. Thus, it is difficult to solve the problem of natural key
discovery with a manually established ruleset, which is why we
propose a supervised machine learning approach. We model the
problem of natural key discovery as a binary classification problem
for sets of columns in a table. We engineer features from the data
and layout of the table, the stability of columns over time (temporal
dimension) and the appearance of values in other tables (spatial
dimension). This allows us to outperform related approaches for the
discovery of subject columns, which fail to recognize many natural
keys as identifiers, due to the limitations previously discussed. In
Section 4 we empirically demonstrate that our approach recognizes
significantly more entity identifiers than state of the art techniques,
outperforming them by over 20% of F-measure.

Overall, the main contributions of this paper are:
• The first formal definition of the natural key using the novel
notions of temporal stability and spatial identifiability.

• A supervised learning approach for the discovery of natural
keys using a variety of specially designed features.

• An experimental evaluation of our model.
• A publicly available corpus of Wikipedia table versions with
manually annotated natural keys.

• The dataset of all tables in Wikipedia (including their past
versions) with programmatically annotated natural keys.2

The remainder of the paper is organized as follows: Section 2
reviews related work. Subsequently, Section 3 describes how we
model the discovery of the natural key as a classification problem
and presents our set of features. Section 4 presents the experimental
evaluation of our model. Finally, Section 5 summarizes our insights
and concludes the paper.

2 RELATEDWORK
Since the initial WebTables project [6], webtables have received
considerable attention for different purposes, such as the detection
of relational webtables [3, 22], schema extraction [1], the augmen-
tation of tables for information retrieval [8, 23], answering queries
with webtables [17], or information integration with knowledge
bases [11]. A concise overview of many more applications and
problems is provided in the retrospective by Cafarella et al. [5].
2All data and annotations are available at www.IANVS.org .
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While the problem of finding join candidates for a webtable has
been addressed [21, 26], the discovery of keys in raw webtables has
not been actively studied yet. Recently, Lehmberg et al. introduced
an approach that synthesizes large tables from individual webta-
bles [13]. For these combined tables, it is able to determine the key
by discovering approximate functional dependencies. While this
approach works well for the synthesized tables, the authors argue
that it is not well suited to individual webtables with few rows,
because too many coincidental functional dependencies would be
found. In raw webtables, prior work has frequently used the subject
column to identify entities [3, 14, 25]. However, current approaches
for the detection of subject columns are inadequate to discover
many natural keys, and thus miss many valid entity identifiers.
We show this by empirically comparing against the approaches by
Lehmberg et al. [14] and Zhang [25] in Section 4.

The discovery of keys in traditional database systems has re-
ceived much attention, including approaches to discover composite
keys [19] and foreign key relationships [7, 9, 15, 24]. In a paper about
schema normalization, Papenbrock et al. introduce a scoring system
to determine the best candidate for the primary key [16], while
Jiang et al. have published a method to jointly detect primary and
foreign keys [12]. However, both of these methods were designed
for the discovery of surrogate keys, which are system-generated
and lack meaning. In contrast, natural keys consist of meaningful
entity attributes, especially in webtables, making approaches for
traditional database systems ill-suited to discover them.

Various researchers have also studied the problem of discovering
keys or key-like attribute sets in RDF data [2, 20]. However, the
problem of key discovery in knowledge bases is substantially dif-
ferent from the discovery of keys in actual tables: the data entries
in knowledge bases are frequently created in a decentralized way
and thus do not necessarily follow a strict schema.

3 A SUPERVISED LEARNING APPROACH
FOR NATURAL KEY DISCOVERY

We model the problem of natural key discovery as a classification
task, which we solve by extracting hand-crafted features from the
tables. As discussed in Section 1, global and local natural keys must
both meet three criteria: keyness, temporal stability, and spatial
identifiability. To ensure this, we consider data directly from the
webtable, and make use of two additional inputs that correspond to
the temporal and spatial dimensions: the webtable’s version history
and a large corpus of other, independently created webtables.

3.1 Natural key discovery: A classification task
Given training data with known natural keys, we map the task of
natural key discovery in webtables to a binary classification prob-
lem: For a given set of columnsC in a tableT , a set of past or future
versions of this table H , and a corpus of independently created
tables S , return true if C is the natural key of T , false otherwise.
We call (C,T ,H , S) an instance and refer to C as the key candidate.
Wikipedia provides its version history, which means that H can be
constructed for each table by matching tables across the different
revisions of its pages. To construct this matching we use a bag of
words model. In our experiments, we use the set of all tables in
English Wikipedia pages as of 11/2017 as our table corpus S .
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Figure 2: Predicting keys of unseen webtable histories.

Having established the problem instance, we face the challenge
that the number of possible key candidates grows exponentially
with the number of columns in a table. However, in the dataset
that we manually annotated (see Section 4), we observed that 96.9%
of all multi-column keys are either tightly clustered (all adjacent
to each other) or consist of exactly two columns with exactly one
non-key column between them. Ignoring all other multi-column
key candidates reduces the number that needs to be considered
to O(m) per arity, wherem is the number of columns in the table.
Thus, given a set of annotated tables, we generate a reasonably
sized set of training instances for each table, for which we then
compute different features (see Section 3.2) that are used to train
the model.

After the model is trained, the natural key of an unseen webtable
is found by applying every plausible key candidate to the model and
picking the candidate for which the model’s posterior probability
is highest. In practice, given a table history H , we do not need to
predict the natural key for allT ∈ H , becausemany tables inH share
the same schema and thus have the same natural key. Thus, we
partition H into sets of tables {H1, ...,Hk } where each Hi consists
of tables with the same schema. We then predict the natural key
only for the table in eachHi that has the most data rows, and output
it as the key for all tables in Hi .

We employ the same strategy when training the model on anno-
tated table histories, so that the model does not overfit on features of
large table histories with no schema changes. Figure 2 summarizes
the process of predicting keys for an unseen table history.

3.2 Features for natural key discovery
Features must work for both single columns and sets of columns.
Our solution is as follows: Given an instance (C,T ,H , S) and a
function f that calculates a feature for a single column, we sort all
c ∈ C by their position in the schema and subsequently calculate
f (c) for all c ∈ C . Such a function f results in amax actual features
in the feature space, where amax is the highest key arity in the
training set. If the arity of a key candidate is smaller than amax we
fill up the remaining feature instances of f with a reserved value –
we use −1 for numeric features and “NA” for categorical features.
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An overview over the entire feature set is given in Table 1. An
implementation of our features and the model are available at
www.IANVS.org. Corresponding to the definition, our features
are divided into local, temporal, and spatial features. Some of our
features are in the spirit of [16] while temporal and spatial features
are new and were specifically designed for our approach.

Local features. The local features give the classifier information
about the layout and content of the table or the current key can-
didate. These features include the number of columns, and rows;
uniqueness of C; the position of c ∈ C in the schema; the average
content length; occurrences of style markups; or the presence of
specific characters. Furthermore, we determine commonly used
datatypes: Integer, Decimal, Date, Year, Season (e.g., ‘2017/18’), Link,
Ranking (consecutively increasing integers), Image Link, Wikipedia
Template. We also check whether values match aWikipedia Page
Name. Finally, we hash the string value of the column headers to
obtain a basic numerical representation of their values.

Temporal features. The temporal features use historical infor-
mation to assess the temporal stability of C , based on the other
versions of T in H . To find versions of an individual column c in
other tables inH , we execute a matching, once again based on a bag
of words similarity measure. This matching of columns across the
different table versions is used to determine the (relative) number
of other occurrences of the key candidate C , as well as the number
of occurrences in which C is unique. Furthermore, the number of
deleted and inserted values in C over time gives an assessment of
the overall volatility of T [C]. Finally, we can count isolated updates
to values in C . We define an isolated update to a cell in a column as
a change in the cell while all other cells in the associated row do
not change (in that version). As keys are stable identifiers, values
in the natural key should rarely receive isolated updates.

Spatial features. Given other, independently created tables (S),
there are two aspects of the spatial dimension to consider: The
usage of columns similar toC as a natural key; and the existence of
references to the values in C . Because the former aspect requires
ground truth about the keyness, it can be checked only against
tables from the training set. The latter aspect can be checked against
an entire corpus of webtables and thus must also scale accordingly.

To check whether a set of columns C is used as a natural key
in other tables, one has to first find C in other tables. This is not a
question of finding the same value set, as for example, two tables
with the identical schema (ISBN,Author,Published) may contain
different books, but the ISBN columns model the same concept and
are clearly both natural keys. Thus, we search for similar schemata
by using a distance measure between table headers. Given two
tables T1 and T2 from different table histories with their respective
headers TH1 and TH2 (represented as matrices of html elements),
the distance between T1 and T2 is defined in the following way:

dTH (T1,T2) =
n∑
i=1

m∑
j=1

δ (TH1(i, j),TH2(i, j)) (1)

where δ (v1,v2) =


δs (v1.text,v2.text), if v1 and v2 exist
δe (v1.text), if v1 exists
δe (v2.text), otherwise

and where n andm are the maximum number of rows and columns
of both table headers, respectively, δs is a string-distance function
and δe is the distance between a cell and a non-existent cell.

Given the string-distance functions of equality (eq), containment
(ctmnt), and Levenshtein-distance (lvst), we construct four different
table header distances, which are summarized in Table 2. Given
such a table header distance measure (denoted as d), an instance
(C,T ,H , S), a threshold θ , and the training set of tables ST ⊆ S , we
define the following features:

• #matches: (relative) number of matches |m(T , ST )|, where
m(T , ST ) = {T ′ ∈ ST | d(T ,T ′) < θ }

• spatialKeyness: (relative) number of matches, that have C
as the key: sk(T , ST ) = |{T ′ ∈m(T , ST ) | C is key in T ′}|

• nnKey: Boolean value that reflects if the nearest neighbor
of T (with regards to d), also has C as the natural key

• nnDist: distance betweenT and its nearest neighbor accord-
ing to d

The threshold θ needs to be set for each individual distance mea-
sure. However, given a distance measure dTH and ST , reasonable
thresholds can be found automatically. The intuition is that we want
to set θ so that spatial keyness is high for instances where C is in
fact the key. To do so, we calculate d for each pair of table headers in
ST that originate from different table histories, and mark the result
if the keys match. We then successively test different thresholds
θ (with appropriate increments for each dTH ) and look at the set
of all labeled distances smaller than θ . For these, we calculate the
precision (distances marked as key matches are true positives). We
then choose the highest θ that still achieves a desired precision (for
example 90%) as the final threshold.

To check for references to values in C , we look for potential
join-partners for the key candidate C in S . To do so, we use LSH
ensemble [26]. This index can be queried to find the set of joinable
tables by searching for columns that contain the query column to a
specified degree (the containment threshold). For each c ∈ C and
each containment threshold t ∈ {50, 60, 70, 80, 90, 100} we obtain
exactly one feature: The number of columns in the corpus that
contain at least t% of the values of c as returned by the index.

4 EMPIRICAL EVALUATION
Given the set of all Wikipedia table histories, we randomly sampled
1,000 table histories and annotated all versions of each contained
table. This results in a dataset containing 7,295 tables, where each
table contains an average of 5.5 columns of which 2.1 are unique.
Table 3 shows the basic distributions of local and global natural keys
in the hand-labelled dataset, and in all Wikipedia table versions
(assigned by our model as described later in this section).

We evaluate our approach against the following approaches:
• U: Baseline returning the first unique column as natural key.
• UNM: Baseline returning the first non-numeric unique col-
umn as natural key.

• LE:Aheuristic for discovering subject columns by Lehmberg
et al., which is based on finding rdfs:label attributes [14].

• ZH: A score-based approach by Zhang et al. to discover
subject columns [25]. The approach considers named entity
columns and scores them based on uniqueness, completeness,
position in the schema, similarity to the table’s context and
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Table 1: Complete feature set for an instance I = (C,T ,H , S). Features marked with # are always calculated as both absolute and
relative measures. Features marked with a * are families of features, each calculated in the same way. Features marked with a
† are calculated on each c ∈ C individually (as described in Section 3.2) and we denote c to refer to the input column. IGRG and
IGRL denote the information gain ratio on our manually labeled dataset (see Section 4) for the tasks of global and local key
discovery. The scores for feature families are averaged. Information gain ratios greater than 0.025 are in bold font.

Feature name Description IGRG IGRL
Local Features (see Section 3.2 for details)

#capitalLetters† The number of capitalized letters in all v ∈ T [c] 0.014 0.010
#chars† Number of characters in all v ∈ T [c] 0.009 0.011
#words† Number of words in all v ∈ T [c] 0.019 0.019
colPosition† Number of columns to the left of of c 0.015 0.017
dataType*† The datatype of T [c] 0.008 0.009
dimensions* Number of rows and columns of the table 0.043 0.043
distanceBetweenColumns Summed up distance between the positions of all c ∈ C 0.003 0.005
hasHeader† True if c has a header, false otherwise 0.005 0.006
header† Hash representation of the header of c as a numerical value 0.023 0.026
keyArity Number of columns of the key candidate (|C |) 0.002 0.004
#links† Number of links in T [c] 0.022 0.007
#specialChars*† Number of occurrences of special characters (e.g., , . ; ") in T [c] 0.025 0.029
#styleMarkups*† Number of characters with a specific style markup in T [c] 0.030 0.030
#uniqueCols Number of unique columns in T 0.035 0.037
uniqueness |{v ∈ T [C]}|/#rows(T ) 0.025 0.033

Temporal Features (see Section 3.2 for details)
candidateUniquenessOverTime |HU |/|H |, where HU = {T ′ ∈ H | C ⊆ T ′ ∧T ′[C] is unique} 0.063 0.079
individualUniquenessOverTime† |HIU |/|H |, where HIU = {T ′ ∈ H | c ∈ T ′ ∧T ′[c] is unique} 0.011 0.014
#colPositionChanges† Number of versions in which c changed its position in the schema. 0.014 0.017
#deletes Number of deletes of old values in all {T ′[C] | T ′ ∈ H ∧C ⊆ T ′} 0.026 0.029
#inserts Number of inserts of new values in all {T ′[C] | T ′ ∈ H ∧C ⊆ T ′} 0.016 0.017
#otherOccurrences† |{T ′ | T ′ ∈ H ∧T ′ , T ∧ c ∈ T ′}| 0.022 0.023
#isolatedUpdates The number of value changes in C . 0.004 0.004

Spatial Features (see Section 3.2 for details)
nnDist* Table distance to the nearest neighbor 0.103 0.105
nnKey* Keyness of equivalent key candidate in nearest neighbor 0.006 0.002
#matches* Number of other tables whose headers are similar 0.028 0.029
referenceCount*† Number of references to c in other tables 0.017 0.019
spatialKeyness* Number of other tables whose headers are similar in which C is key 0.040 0.038

Table 2: Table-header distance measures

δs (s1, s2)δs (s1, s2)δs (s1, s2) δe (s)δe (s)δe (s) Description
eq(s1, s2) 2 Exact header matches

ctmnt(s1, s2) 2 Header containment
lvst(s1, s2) lvst(s1, “”) ∗ 8 Similar headers, high

missing cell penalty
lvst(s1, s2) lvst(s1, “”) ∗ 0.25 Similar headers, low

missing cell penalty

a web-search score that counts occurrences of the named
entities in pages returned by a search engine.

We compare these approaches against a random forest, trained
using the following four subsets of our features: local features (L),
local and temporal features (LT), local and spatial features (LS), and
full feature set (LTS). We use 10-fold cross validation to evaluate

Table 3: Distribution of natural keys in the ground truth
(hand-labelled and predicted) and the entire Wikipedia.

Arity Ground Truth Predicted Entire Wikipedia
Global Local Global Local Global Local

1 42.66% 48.89% 46.23% 51.11% 49.23% 48.05%
2 6.02% 2.00% 2.41% 0.25% 2.67% 0.05%

>2 0.10% 0.33% – – – –

the models. Given a table history H , we count each distinct schema
in H as one example (as described in Section 3.1) which results in
1,618 tables on which we evaluate.

The F-measures of all approaches are reported in Table 4. The
results show that related works ZH and LE do not perform signif-
icantly better and sometimes even worse than the baselines for
either type of natural key. This confirms our intuition that existing
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Figure 3: Precision-recall curves for global and local natural key discovery

approaches for subject column detection are too narrowly focused
on finding specific types of identifiers and thus miss many natural
keys that our approach is able to find.

Table 4 shows that our solution performs much better than all
baselines and related work approaches. It is apparent that just the
local features already help the classifier to perform quite well (>70%
F-measure). The additional temporal and spatial features signifi-
cantly improve this score. Using the full feature set as opposed to
using just local features increases the F-measure by 7.4% for global
natural keys and by 8.8% for local natural keys. When equipped
with local, temporal and spatial features, our approach beats all the
existing work by at least 20% F-measure for both natural key types.

Table 4: F-measures for all compared methods.

Baselines Related Work Our Approach
U UNM LE ZH L LT LS LTS

Global 0.480 0.560 0.470 0.550 0.735 0.811 0.752 0.810
Local 0.590 0.520 0.580 0.470 0.706 0.748 0.761 0.793

Figure 3 shows precision-recall curves for all approaches that
have a configurable threshold. Our approach is able to balance
precision and recall well, because even for relatively high recall
values, the precision remains acceptable. The reported F-measures
for all our methods were achieved by using a tuned classification
threshold, which optimized F-measure. This resulted in balanced
precision and recall for all models. For example LTS achieved 80.2%
precision and 82.7% recall for global natural keys as well as 78.5%
precision and 80.8% recall for local natural keys. That being said,
it is also possible to tune the models for a higher precision at the
expense of recall, should that be desired. The curves show that LTS
can achieve 90.2% precision at 54.2% recall for global natural keys
and 90.7% precision at 62.8% recall for local natural keys. Our inves-
tigation of classification errors revealed two common error types:
The models struggle in cases where there is little useful temporal or
spatial data available or natural keys use specific Wikipedia syntax
like {{CHN}} or {{flagathlete|[[Ellen van Dijk]]|NED}} .

We have used our model to discover natural keys in the entire
corpus of Wikipedia table histories. For efficiency reasons, we did
not employ spatial features, thus using LT as our model. The corpus
contains 40 million tables in total. On a server with two Intel Xeon

E5-2650 2.00 GHz CPUs and 128 GB RAM, we were able to discover
natural keys for the entire set of table histories in Wikipedia in less
than five days, using five threads in parallel. When both models
are already in memory, we are able to process a single table in less
than 50 milliseconds. As there are on average fewer than 12,000
updates to tables in Wikipedia every day, our method would be
able to process all daily updates in less than ten minutes.

5 CONCLUSION AND FUTUREWORK
We studied the problem of natural key discovery in Wikipedia
tables. Natural keys are a particularly important piece of metadata
that extends the traditional notion of the subject column, allowing
additional types of identifiers to be recognized. We established the
first formal definition of the natural key, incorporating context and
distinguishing local and global natural keys. In our formulation,
natural keys need to satisfy all requirements of a surrogate key,
remain stable over time, and be identifiable across space.

Next, we presented a novel approach to discover such natural
keys. We model the problem as a binary classification task and
are able to predict single- and multi-column natural keys with a
single model. In accordance with our definition, we extract features
from the table itself, from its version history (time) and from inde-
pendently created tables (space). Our experiments show that our
approach finds significantly more entity identifiers than related ap-
proaches, clearly outperforming them by at least 20% F-measure for
both local and global natural keys. We demonstrate that the usage
of temporal and spatial features raises F-measure by at least 7% for
both types of natural keys. When executing our discovery approach
on the entire set of Wikipedia table versions (40 million tables) we
are able to process a single table in 50 milliseconds, allowing us to
process 15 years of Wikipedia tables in less than 5 days.

While our approach has currently been applied only to English
Wikipedia tables, we are confident that it can also be applied to
other language-versions and furthermore arbitrary webtables as
well with a reasonable amount of additional effort: only two of our
features are tailored to Wikipedia tables and none are language-
specific. Furthermore, as the proposedmethod allows us tomaintain
the current state of Wikipedia tables and process incoming updates
in an online and parallelized way, future work could design a system
that maintains the state of all Wikipedia tables, updates them on a
daily basis and discovers new natural keys in an online fashion.
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