Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI
  • de

Dissertation Gero Decker

With the rise of electronic integration between organizations, the need for a precise specification of interaction behavior increases. Information systems, replacing interaction previously carried out by humans via phone, faxes and emails, require a precise specification for handling all possible situations. Such interaction behavior is described in process choreographies. Choreographies enumerate the roles involved, the allowed interactions, the message contents and the behavioral dependencies between interactions. Choreographies serve as interaction contract and are the starting point for adapting existing business processes and systems or for implementing new software components.

As a thorough analysis and comparison of choreography modeling languages is missing in the literature, this thesis introduces a requirements framework for choreography languages and uses it for comparing current choreography languages. Language proposals for overcoming the limitations are given for choreography modeling on the conceptual and on the technical level.

Using an interconnection modeling style, behavioral dependencies are defined on a per-role basis and different roles are interconnected using message flow. This thesis reveals a number of modeling “anti-patterns” for interconnection modeling, motivating further investigations on choreography languages following the interaction modeling style. Here, interactions are seen as atomic building blocks and the behavioral dependencies between them are defined globally. Two novel language proposals are put forward for this modeling style which have already influenced industrial standardization initiatives.

While avoiding many of the pitfalls of interconnection modeling, new anomalies can arise in interaction models. A choreography might not be realizable, i.e. there does not exist a set of interacting roles that collectively realize the specified behavior. This thesis investigates different dimensions of realizability.

Dissertation als Download (.pdf)