Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI

Marian Gawron

Towards Automated Advanced Vulnerability Analysis

The identification of vulnerabilities in IT infrastructures is a crucial problem in enhancing the security, because many incidents resulted from already known vulnerabilities, which could have been resolved. Thus, the initial identification of vulnerabilities has to be used to directly resolve the related weaknesses and mitigate attack possibilities. The nature of vulnerability information requires a collection and normalization of the information prior to any utilization, because the information is widely distributed in different sources with their unique formats. Therefore, the comprehensive vulnerability model was defined and different sources have been integrated into one database. Furthermore, different analytic approaches have been designed and implemented into the HPI-VDB, which directly benefit from the comprehensive vulnerability model and especially from the logical preconditions and postconditions.

Firstly, different approaches to detect vulnerabilities in both IT systems of average users and corporate networks of large companies are presented. Therefore, the approaches mainly focus on the identification of all installed applications, since it is a fundamental step in the detection. This detection is realized differently depending on the target use-case. Thus, the experience of the user, as well as the layout and possibilities of the target infrastructure are considered. Furthermore, a passive lightweight detection approach was invented that utilizes existing information of corporate networks to identify applications.

In addition, two different approaches to represent the results using attack graphs are illustrated in the comparison between traditional attack graphs and a simplistic graph version, which was integrated into the database as well. The implementation of those use-cases for vulnerability information especially considers the usability. Beside the analytic approaches, the high data quality of the vulnerability information had to be achieved and guaranteed. The different problems of receiving incomplete or unreliable information for the vulnerabilities are addressed with different correction mechanisms. The corrections can be carried out with correlation or lookup mechanisms in reliable sources or identifier dictionaries. Furthermore, a machine learning based verification procedure was presented that allows an automatic derivation of important characteristics from the textual description of the vulnerabilities.