• de

Software Engineering for Embedded Systems (Wintersemester 2008/2009)

Dozent: Prof. Dr. Holger Giese (Systemanalyse und Modellierung)
Tutoren: Dipl.-Inform. Stefan Neumann


Software-intensive systems, in which a considerable fraction of the system development efforts is dedicated to the development of embedded software, are often regarded as the most important software engineering field in the years to come. They are expected to be one key factor of success for many industries such as, for example, the automotive sector, transportation, or medical devices. As today technical systems also become connected to each other using network technology, we no longer only have technical systems which are controlled by isolated operating embedded software. Instead, the software may include complex information processing capabilities and the coordination between the different technical systems via networks taking hard real-time constraints into account.

Modeling embedded systems often results in a mix of models from a multitude of disciplines such as software engineering, control engineering, mechanical engineering, and electrical engineering. Block diagrams in systems engineering and the Unified Modeling Language (UML) in software engineering, are prominent examples of domain specific modeling techniques used for modeling. Recently, several steps towards integrating both worlds can be observed. UML 2.0 component diagrams offer a system view which has been originally invented for complex real-time systems in the telecommunications domain. SysML suggests an extension of the UML for systems engineering. The required integration has to combine the usually continuous world considered by systems engineering and the discrete software engineering view and thus results in techniques for hybrid systems which support both continuous as well as discrete behavior.

Embedded systems are often safety-critical applications where their correct operation is vital to ensure the safety of the public and environment. Examples include shut-down systems for nuclear power plants, fly-by-wire aircrafts, autonomous train control software or anti-lock braking systems in automobiles. Safety is a system property and thus cannot be studied by simply taking into account the software part of an embedded system, only. However, in this lecture we will address the general engineering aspects of safety in a rather superficial manner and mainly concentrate on the specific problems of safety-critical systems which contain (complex) software parts.

In this lecture, we will review the current state of the art of software engineering for embedded systems taking into account the techniques available for the different development activities such as project management, requirements engineering, analysis & design, implementation, and verification & validation. This will, in particular, include the study of available techniques for the development of systems which are safety-critical, have hard real-time constraints, and are hybrid systems. Also an overview about the current state of the art for the model-driven development of embedded systems is provided.


The slides for the lectures will be published on the internal directory of the lecture.

In addition, the following books, articles and reports are recommended:

[1] L. Carloni, M. D. D. Benedetto, R. Passerone, A. Pinto, and A. Sangiovanni-Vincentelli. Modeling Techniques, Programming Languages and Design Toolsets for Hybrid Systems. Project IST-2001-38314 COLUMBUS - Design of Embedded Controllers for Safety Critical Systems, WPHS: Hybrid System Modeling, July 2004. Version: 0.2, Deliverable number: DHS4-5-6.

[2] D. Henriksson, O. Redell, J. El-Khoury, M. Törngren, and K.-E. Arzen. Tools for Real-Time Control Systems Co-Design - A Survey. Technical Report ISRNLUTFD2/TFRT--7612--SE, Department of Automatic Control, Lund Institute of Technology, Sweden, April 2005.

[3] J. C. Laprie, editor. Dependability : basic concepts and terminology in English, French, German, Italian and Japanese [IFIP WG 10.4, Dependable Computing and Fault Tolerance], volume 5 of Dependable computing and fault tolerant systems. Springer Verlag, Wien, 1992.

[4] Nancy G. Leveson. Safeware: system safety and computers. Addison-Wesley, 1995.

[5] P. Liggesmeyer and D. Rombach, eds., Software Engineering eingebetteter Systeme: Grundlagen - Methodik - Anwendungen. Elsevier, 2005. (UPB Bib: TWQ 11163 +1)

[6] Peter G. Neumann. Computer related risks. ACM Press, 1995.

[7] Object Management Group. Systems Modeling Language (SysML) Specification, January 2005. Document: ad/05-01-03.

[8] Object Management Group. UML for System Engineering Request for Proposal, ad/03-03-41, March 2003.

[9] Object Management Group. UML 2.0 Superstructure Specification, October 2004. Document: ptc/04-10-02 (convenience document).

[10] T. Samad and G. Balas, eds., Software-Enabled Control: Information Technology for Dynamical Systems. IEEE Press and Wiley-Interscience, 2003.

[11] N. Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.

Lern- und Lehrformen

Es finden zwei 90-minütige Veranstaltungen pro Woche statt. Dieses sind in der Regel Vorlesungen. Im Rhythmus von ca. zwei Wochen wird alternativ eine Übung stattfinden, in der die Lösungen für vorher gestellte Übungsblätter vorgeführt werden sollen.


Aktuell (16.01.2009):

Am 26.01.2009 findet anstelle der Übung eine zusätzliche Vorlesung statt.

Zur Leistungsbewertung wird ausschließlich eine abschließende mündliche Prüfung herangezogen. Die Termine für die mündliche Prüfung finden nach Vereinbarung statt.


Der erste Termin findet am 20.10 um 11:00 Uhr im HS 2 statt.

Regelmäßige Termi

  • Mo. 11:00 Uhr im HS 2
  • Mi. 11:00 Uhr im B-E.2

Keine Vorlesung oder Übung ist am:

  • 22.12.

Termine an denen Übungen stattfinden werden (Termine können sich noch ändern)

  • 05.11.
  • 12.11.
  • 03.12.
  • 15.12.
  • 17.12.
  • 02.02.
  • 04.02.

Am 11.2 findet ein eingeladener Vortrag statt:

State-of-the Art Techniken zur Qualitätssicherung eingebetteter Software im Automobil

Ingo Stürmer, Model Engineering Solutions GmbH (http://www.model-engineers.com)

Moderne Kraftfahrzeug verfügen mittlerweile über ein Vielzahl von Steuergeräten, die mit Hilfe eingebetteter Software Steuerungs- und Regelungsfunktionen im Fahrzeug übernehmen. Dies betrifft auch sicherheits-relevante Funktionen, wie z.B. der Ansteuerung der Bremsen durch Software. Um der steigenden Komplexität der Software-Systeme zu beherrschen und um potentielle Fehler in der Software möglichst frühzeitig aufzudecken, wird die im Steuergerät enthaltene Software maßgeblich modell-basierte entwickelt.

Der Vortrag gibt einen Überblick über State-of-the-Art Methoden und Tools die im Bereich der Qualitätssicherung modellbasiert entwickelter, eingebetteter Software im Automobil eingesetzt werden angereichert mit aktuellen Beispielen aus der Praxis.

Allgemeine Information

  • Semesterwochenstunden : 4
  • ECTS : 6
  • Benotet : Ja
  • Einschreibefrist : 14.11.2008
  • Programm : IT-Systems Engineering MA
  • Lehrform :
  • Belegungsart : Wahl