0. Gopher, D., & Donchin, E. (1986). Workload: An examination of the concept. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance, Vol. 2. Cognitive processes and performance (pp. 1–49). John Wiley & Sons.
1. A. Bener, E. Yildirim, T. Ozkan, and T. Lajunen, “Driver ¨ sleepiness, fatigue, careless behavior and risk of motor vehicle crash and injury: Population based case and control study,” vol. 4, no. 5, pp. 496–502. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S209575641730212X
2. J. M. Twenge, T. E. Joiner, M. L. Rogers, and G. N. Martin, “Increases in depressive symptoms, suicide-related outcomes, and suicide rates among u.s. adolescents after 2010 and links to increased new media screen time,” vol. 6, no. 1, pp. 3–17, publisher: SAGE Publications Inc. [Online]. Available: https://doi.org/10.1177/2167702617723376
3. E. Frank and A. D. Dingle, “Self-reported depression and suicide attempts among u.s. women physicians,” vol. 156, no. 12, pp. 1887– 1894, publisher: American Psychiatric Publishing. [Online]. Available: https://ajp.psychiatryonline.org/doi/full/10.1176/ajp.156.12.1887
4. L. Shu, J. Xie, M. Yang, Z. Li, Z. Li, D. Liao, X. Xu, and X. Yang, “A review of emotion recognition using physiological signals,” vol. 18, no. 7, p. 2074, number: 7 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/18/7/2074
5. B. Mandal, L. Li, G. S. Wang, and J. Lin, “Towards detection of bus driver fatigue based on robust visual analysis of eye state,” vol. 18, no. 3, pp. 545–557, conference Name: IEEE Transactions on Intelligent Transportation Systems.
6. R. Bhardwaj, P. Natrajan, and V. Balasubramanian, “Study to determine the effectiveness of deep learning classifiers for ECG based driver fatigue classification,” in 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), pp. 98–102, ISSN: 2164-7011.
7. N. Cummins, B. Vlasenko, H. Sagha, and B. Schuller, “Enhancing speech-based depression detection through gender dependent vowel-level formant features,” in Artificial Intelligence in Medicine, ser. Lecture Notes in Computer Science, A. ten Teije, C. Popow, J. H. Holmes, and L. Sacchi, Eds. Springer International Publishing, pp. 209–214.
8. D. G. Amen, P. Krishnamani, S. Meysami, A. Newberg, and C. A. Raji, “Classification of depression, cognitive disorders, and co-morbid depression and cognitive disorders with perfusion SPECT neuroimaging,” vol. 57, no. 1, pp. 253–266, publisher: IOS Press. [Online]. Available: https://content.iospress.com/articles/journalof-alzheimers-disease/jad161232
9. D. Palacios, V. Rodellar, C. Lazaro, A. G ´ omez, and P. G ´ omez, ´ “An ICA-based method for stress classification from voice samples,” vol. 32, no. 24, pp. 17 887–17 897. [Online]. Available: https://doi.org/10.1007/s00521-019-04549-3
10. R. Castaldo, L. Montesinos, P. Melillo, C. James, and L. Pecchia, “Ultra-short term HRV features as surrogates of short term HRV: a case study on mental stress detection in real life,” vol. 19, no. 1, p. 12. [Online]. Available: https://doi.org/10.1186/s12911-019-0742-y
11. R. A. Khalil, E. Jones, M. I. Babar, T. Jan, M. H. Zafar, and T. Alhussain, “Speech emotion recognition using deep learning techniques: A review,” vol. 7, pp. 117 327–117 345, conference Name: IEEE Access.
12. N. Jain, S. Kumar, A. Kumar, P. Shamsolmoali, and M. Zareapoor, “Hybrid deep neural networks for face emotion recognition,” vol. 115, pp. 101–106. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167865518301302
13. G. Waterstraat, T. Fedele, M. Burghoff, H.-J. Scheer, and G. Curio, “Recording human cortical population spikes non-invasively–an EEG tutorial,” vol. 250, pp. 74–84.
14. P. Sarma, P. Tripathi, M. P. Sarma, and K. K. Sarma, “Pre-processing and feature extraction techniques for EEG- BCI applications- a review of recent research,” p. 8.
15. A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” vol. 16, no. 3, p. 031001. [Online]. Available: https://iopscience.iop.org/article/10.1088/1741-2552/ab0ab5
16. Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert, “Deep learning-based electroencephalography analysis: a systematic review,” vol. 16, no. 5, p. 051001. [Online]. Available: https://iopscience.iop.org/article/10.1088/1741-2552/ab260c
17. M. Chan, D. Esteve, J.-Y. Fourniols, C. Escriba, and ` E. Campo, “Smart wearable systems: Current status and future challenges,” vol. 56, no. 3, pp. 137–156. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0933365712001182