Datum der Verteidigung: 10.11.2011
Business Process Management (BPM) emerged as a means to control, analyse, and optimise business operations. Conceptual models are of central importance for BPM. Most prominently, process models define the behaviour that is performed to achieve a business value. In essence, a process model is a mapping of properties of the original business process to the model, created for a purpose. Different modelling purposes, therefore, result in different models of a business process. Against this background, the misalignment of process models often observed in the field of BPM is no surprise. Even if the same business scenario is considered, models created for strategic decision making differ in content significantly from models created for process automation. Despite their differences, process models that refer to the same business process should be consistent, i. e., free of contradictions. Apparently, there is a trade-off between strictness of a notion of consistency and appropriateness of process models serving different purposes. Existing work on consistency analysis builds upon behaviour equivalences and hierarchical refinements between process models. Hence, these approaches are computationally hard and do not offer the flexibility to gradually relax consistency requirements towards a certain setting.
This thesis presents a framework for the analysis of behaviour consistency that takes a fundamentally different approach. As a first step, an alignment between corresponding elements of related process models is constructed. Then, this thesis conducts behavioural analysis grounded on a relational abstraction of the behaviour of a process model, its behavioural profile. Different variants of these profiles are proposed, along with efficient computation techniques for a broad class of process models. Using behavioural profiles, consistency of an alignment between process models is judged by different notions and measures. The consistency measures are also adjusted to assess conformance of process logs that capture the observed execution of a process. Further, this thesis proposes various complementary techniques to support consistency management. It elaborates on how to implement consistent change propagation between process models, addresses the exploration of behavioural commonalities and differences, and proposes a model synthesis for behavioural profiles.
Dissertation zum Download (PDF)