Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI
 

Data Science for Wearables (Sommersemester 2024)

Dozent: Prof. Dr. Bert Arnrich (Digital Health - Connected Healthcare) , Orhan Konak (Digital Health - Connected Healthcare)

Allgemeine Information

  • Semesterwochenstunden: 4
  • ECTS: 6
  • Benotet: Ja
  • Einschreibefrist: 01.04.2024 - 30.04.2024
  • Prüfungszeitpunkt §9 (4) BAMA-O: 08.07.2024
  • Lehrform: Vorlesung / Übung
  • Belegungsart: Wahlpflichtmodul
  • Lehrsprache: Englisch

Studiengänge, Modulgruppen & Module

Data Engineering MA
Digital Health MA
Software Systems Engineering MA
IT-Systems Engineering MA
  • OSIS: Operating Systems & Information Systems Technology
    • HPI-OSIS-K Konzepte und Methoden
  • OSIS: Operating Systems & Information Systems Technology
    • HPI-OSIS-T Techniken und Werkzeuge
  • OSIS: Operating Systems & Information Systems Technology
    • HPI-OSIS-S Spezialisierung
  • SAMT: Software Architecture & Modeling Technology
    • HPI-SAMT-K Konzepte und Methoden
  • SAMT: Software Architecture & Modeling Technology
    • HPI-SAMT-T Techniken und Werkzeuge
  • SAMT: Software Architecture & Modeling Technology
    • HPI-SAMT-S Spezialisierung

Beschreibung

Course Content

  1. Introduction to Data Science for Wearables: Covering essential data science principles and their application in analyzing time-series data from wearables. This includes an overview of wearable technology's role in health and fitness, alongside statistical foundations for robust data analysis.
  2. Statistical Data Analysis and Experimentation: Focusing on designing statistically valid empirical data collection methods with wearables, including conducting experiments and achieving accurate statistical test results.
  3. Handling Time-Series Data: Techniques for managing time-series data challenges, such as imputation for missing data and dimensionality reduction, to simplify analysis without losing critical information.
  4. Feature Engineering and Machine Learning Basics: Introducing feature extraction methods from raw data and transitioning to machine learning, specifically for tasks like classification and pattern recognition in wearable sensor data.
  5. Practical Application with Wearables: Empirical experimentation with wearable devices to apply covered theories in real-world scenarios, enhancing learning through hands-on experience. No prior knowledge required; the course caters to all levels, providing necessary background knowledge.


Please find more detailed information here

 

Leistungserfassung

The final grade is composed of three equal parts:

  • Experimental data collection and data analysis: 1/3
  • Technical report: 1/3
  • Presentation: 1/3

Termine

Mondays 13:30pm &
Tuesdays 9:15-10:45am
in G2.U10/14

Zurück