Hasso-Plattner-Institut
Hasso-Plattner-Institut
  
Login
 

Andreas Meyer

Data Perspective in Business Process Management

Geschäftsprozessmanagement ist ein strukturierter Ansatz zur Modellierung, Analyse, Steuerung und Ausführung von Geschäftsprozessen, um Geschäftsziele zu erreichen. Es stützt sich dabei auf konzeptionelle Modelle, von denen Prozessmodelle am weitesten verbreitet sind. Prozessmodelle beschreiben wer welche Aufgabe auszuführen hat, um das Geschäftsziel zu erreichen, und welche Informationen dafür benötigt werden. Damit beinhalten Prozessmodelle Informationen über den Kontrollfluss, die Zuweisung von Verantwortlichkeiten, den Datenfluss und Informationssysteme.

Die Automatisierung von Geschäftsprozessen erhöht die Effizienz der Arbeitserledigung und wird durch Process Engines unterstützt. Dafür werden jedoch Informationen über den Kontrollfluss, die Zuweisung von Verantwortlichkeiten für Aufgaben und den Datenfluss benötigt. Während aktuelle Process Engines die ersten beiden Informationen weitgehend automatisiert verarbeiten können, müssen Daten manuell implementiert und gewartet werden. Dem entgegen verspricht ein modell-getriebenes Behandeln von Daten eine vereinfachte Implementation in der Process Engine und verringert gleichzeitig die Fehleranfälligkeit dank einer graphischen Visualisierung und reduziert den Entwicklungsaufwand durch Codegenerierung.

Die vorliegende Dissertation beschäftigt sich mit der Modellierung, der Analyse und der Ausführung von Daten in Geschäftsprozessen. Als formale Basis für die Prozessausführung wird ein konzeptuelles Framework für die Integration von Prozessen und Daten eingeführt. Dieses Framework wird durch operationelle Semantik ergänzt, die mittels einem um Daten erweiterten Petrinetz-Mapping vorgestellt wird. Die modellgetriebene Ausführung von Daten muss komplexe Datenabhängigkeiten, Prozessdaten und den Datenaustausch berücksichtigen. Letzterer tritt bei der Kommunikation zwischen mehreren Prozessteilnehmern auf. Diese Arbeit nutzt Konzepte aus dem Bereich der Datenbanken und überführt diese ins Geschäftsprozessmanagement, um Datenoperationen zu unterscheiden, um Abhängigkeiten zwischen Datenobjekten des gleichen und verschiedenen Typs zu spezifizieren, um modellierte Datenknoten sowie empfangene Nachrichten zur richtigen laufenden Prozessinstanz zu korrelieren und um Nachrichten für die Prozessübergreifende Kommunikation zu generieren. Der entsprechende Ansatz ist nicht auf eine bestimmte Prozessbeschreibungssprache begrenzt und wurde prototypisch implementiert.

Die Automatisierung der Datenbehandlung in Geschäftsprozessen erfordert entsprechend annotierte und korrekte Prozessmodelle. Als Unterstützung zur Datenannotierung führt diese Arbeit einen Algorithmus ein, welcher Informationen über Datenknoten, deren Zustände und Datenabhängigkeiten aus Kontrollflussinformationen extrahiert und die Prozessmodelle entsprechend annotiert. Allerdings können gewöhnlich nicht alle erforderlichen Informationen aus Kontrollflussinformationen extrahiert werden, da detaillierte Angaben über mögliche Datenmanipulationen fehlen. Deshalb sind weitere Prozessmodellverfeinerungen notwendig. Basierend auf einer Menge von Objektlebenszyklen kann ein Prozessmodell derart verfeinert werden, dass die in den Objektlebenszyklen spezifizierten D atenmanipulationen a utomatisiert in ein Prozessmodell überführt werden können. Prozessmodelle stellen eine Abstraktion dar. Somit fokussieren sie auf verschiedene Teilbereiche und stellen diese im Detail dar. Solche Detailbereiche sind beispielsweise die Kontrollflusssicht und die Datenflusssicht, we lche of t durch Aktivitäts-zentrierte beziehungsweise Objekt-zentrierte Prozessmodelle abgebildet werden. In der vorliegenden Arbeit werden Algorithmen zur Transformation zwischen diesen Sichten beschrieben.

Zur Sicherstellung der Modellkorrektheit wird das Konzept der „weak conformance“ zur Überprüfung der Konsistenz zwischen Objektlebenszyklen und dem Prozessmodell eingeführt. Dabei darf das Prozessmodell nur Datenmanipulationen enthalten, die auch in einem Objektlebenszyklus spezifiziert s ind. Die Korrektheit wird mittels SoundnessÜberprüfung einer hybriden Darstellung ermittelt, so dass Kontrollflussund Datenkorrektheit integriert überprüft werden. Um eine korrekte Ausführung des Prozessmodells zu gewährleisten, müssen gefundene Inkonsistenzen korrigiert werden. Dafür werden für jede Inkonsistenz alternative Vorschläge zur Modelladaption identifiziert und vorgeschlagen.

Zusammengefasst, unter Einsatz der Ergebnisse dieser Dissertation können Geschäftsprozesse modellgetrieben ausgeführt werden unter Berücksichtigung sowohl von Daten als auch den zuvor bereits unterstützten Perspektiven bezüglich Kontrollfluss und Verantwortlichkeiten. Dabei wird die Modellerstellung teilweise mit automatisierten Algorithmen unterstützt und die Modellkonsistenz durch Datenkorrektheitsüberprüfungen gewährleistet.