Hasso-Plattner-Institut
Hasso-Plattner-Institut
  
Login
 

Stefanie Müller

Interacting with Personal Fabrication Devices

Personal Fabrication Geräte, wie zum Beispiel 3D Drucker, sind dabei eine Zukunft zu ermöglichen in der selbst Benutzer ohne technisches Fachwissen eigene Objekte erstellen können. Obwohl die Hardware nun verfügbar ist, gibt es derzeit kein geeignetes Interaktionsmodel für Benutzer ohne Fachwissen. Heutzutage werden Objekte mit dem 3D Drucker in einem Stück hergestellt. Da der 3D Druck heutzutage noch ein sehr langsames Verfahren ist und häufig so lange dauert, dass das Objekt über Nacht hergestellt werden muss, müssen Benutzer sorgfältig alles überprüfen bevor sie den Druckauftrag abschicken, da jeder Fehler einen weiteren Tag Wartezeit bedeuten kann. Benutzer ohne technischen Hintergrund haben jedoch nicht das notwendige Fachwissen um alle Faktoren vorhersagen zu können.

In dieser Dissertation schlagen wir vor das Interaktionsmodel von Personal Fabrication Geräten zu ändern, um diese Benutzer besser zu unterstützen. Wir argumentieren, dass die Entwicklung von Personal Fabrication Geräten der Entwicklung von Personal Computern gleicht. Die ersten Computer arbeiteten ein Programm vollständig ab, bevor sie ein Ergebnis an den Benutzer zurückgaben. Durch die Verkleinerung der Interaktionseinheit von ganzen Programmen zu einzelnen Anfragen wurden turn-taking Systeme wie die Kommandozeile möglich. Mit der Einführung von direkter Manipulation konnten Benutzer schließlich kontinuierlich mit dem Program arbeiten: sie erhielten Feedback über jede einzelne Interaktion in Echtzeit. Wir untersuchen in dieser Arbeit ob die gleichen Interaktionskonzepte auf Personal Fabrication Geräte angewendet werden können.

Wir beginnen diese Arbeit damit zu untersuchen wie man die Feedbackzeit bei der Interaktion mit ganzen Objekten verkürzen kann. Wir präsentieren eine Methode mit dem Namen Low-fidelity Fabrication, die bis zu 90% Druckzeit spart. Low-fidelity fabrication ist schnell, weil es 3D Modelle als grobe Vorschauobjekte druckt, die aber ausreichen um die Aspekte zu testen, die gerade wichtig sind. Abhängig vom aktuellen Testfokus schlagen wir vor verschiedene Konvertierungen vorzunehmen: Unser System faBrickator ist besonders für die ersten Testläufe geeignet, wenn ein modulares Design wichtig ist. Unser System WirePrint ist besonders nützlich im nächsten Schritt, wenn die Form des Objektes erhalten bleiben soll. Am Ende erlaubt unser System Platener ein Objekt so zu konvertieren, dass die technische Funktion des Objektes bewahrt wird. Wir erklären das Design unserer interaktiven Editoren und die zugrunde liegenden Konvertierungsalgorithmen.

Durch die Verkleinerung der Interaktionseinheit auf ein einzelnes Element, wie zum Beispiel einer Linie, untersuchen wir wie man Objekt-basierte Fabrikationssysteme in turn-taking Systeme umwandeln kann. Wir zeigen unser 2D System constructable, das auf einem Laser-Cutter basiert. Benutzer von constructable verwenden einen Laserpointer um auf das Werkstück im Laser-Cutter zu zeichnen. Die Zeichnung wird mit einer Kamera aufgenommen, korrigiert, und anschließend direkt mit dem Laser-Cutter ausgeschnitten. Wir erweitern constructable zu 3D mit unserer neuen Laser-Cutter Technologie Laser-Origami. LaserOrigami erzeugt 3D Objekte, indem es mit dem defokussierten Laser das Werkstück erhitzt bis es verformbar wird, die Schwerkraft biegt das Werkstück anschließend in seine 3D Form. Obwohl constructable und LaserOrigami physisches Feedback schnell erzeugen, ist die Interaktion dennoch am besten als turn-taking zu beschreiben: Benutzer editieren zuerst und sehen danach das Ergebnis.

Indem wir die Interaktionseinheit noch einmal verkleinern, nun auf ein einziges Feature, können wir Echtzeitfabrikation erreichen: Benutzereingabe und physisches Feedback sind so eng miteinander verbunden, dass es keine sichtbare Verzögerung mehr gibt. Damit können wir untersuchen, was es bedeutet von turn-taking Systemen zu direkter Manipulation überzugehen. Wir zeigen ein System mit dem Namen FormFab, das solch eine direkte interaktive Kontrolle ermöglicht. FormFab basiert auf dem gleichen Prinzip wie LaserOrigami: Ein Werkstück wird erhitzt bis es verformbar wird. Allerdings verwendet FormFab nicht die Schwerkraft zum verformen, sondern ein pneumatisches System, das Benutzer interaktiv steuern können. Wenn Benutzer den Luftdruck ändern, sehen sie wie sich die Größe der Form in Echtzeit ändert. Dies erlaubt ihnen die beste Entscheidung zu treffen während sie verschiedene Optionen evaluieren.

Im letzten Kapitel dieser Dissertation extrapolieren wir die aktuelle Entwicklung in eine Zukunft in der eine große Anzahl von Personen eigene Objekte herstellen werden. Dabei entstehen zwei neue Herausforderungen: Nachhaltigkeit und das Bewahren von intellektuellem Eigentum. Wir untersuchen Nachhaltigkeit mit einem System, das es erlaubt weniger zu Drucken und stattdessen Objekte anzupassen. Wir untersuchen Fragen zur Bewahrung von geistigem Eigentum mit unserem System Scotty, das Objekte transferiert ohne dabei Duplikate herzustellen und damit das Copyright des Designers erhält.